增强表达数据的双聚类

Jiong Yang, Haixun Wang, Wei Wang, Philip S. Yu
{"title":"增强表达数据的双聚类","authors":"Jiong Yang, Haixun Wang, Wei Wang, Philip S. Yu","doi":"10.1109/BIBE.2003.1188969","DOIUrl":null,"url":null,"abstract":"Microarrays are one of the latest breakthroughs in experimental molecular biology, which provide a powerful tool by which the expression patterns of thousands of genes can be monitored simultaneously and are already producing huge amount of valuable data. The concept of bicluster was introduced by Cheng and Church (2000) to capture the coherence of a subset of genes and a subset of conditions. A set of heuristic algorithms were also designed to either find one bicluster or a set of biclusters, which consist of iterations of masking null values and discovered biclusters, coarse and fine node deletion, node addition, and the inclusion of inverted data. These heuristics inevitably suffer from some serious drawback. The masking of null values and discovered biclusters with random numbers may result in the phenomenon of random interference which in turn impacts the discovery of high quality biclusters. To address this issue and to further accelerate the biclustering process, we generalize the model of bicluster to incorporate null values and propose a probabilistic algorithm (FLOC) that can discover a set of k possibly overlapping biclusters simultaneously. Furthermore, this algorithm can easily be extended to support additional features that suit different requirements at virtually little cost. Experimental study on the yeast gene expression data shows that the FLOC algorithm can offer substantial improvements over the previously proposed algorithm.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"342","resultStr":"{\"title\":\"Enhanced biclustering on expression data\",\"authors\":\"Jiong Yang, Haixun Wang, Wei Wang, Philip S. Yu\",\"doi\":\"10.1109/BIBE.2003.1188969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarrays are one of the latest breakthroughs in experimental molecular biology, which provide a powerful tool by which the expression patterns of thousands of genes can be monitored simultaneously and are already producing huge amount of valuable data. The concept of bicluster was introduced by Cheng and Church (2000) to capture the coherence of a subset of genes and a subset of conditions. A set of heuristic algorithms were also designed to either find one bicluster or a set of biclusters, which consist of iterations of masking null values and discovered biclusters, coarse and fine node deletion, node addition, and the inclusion of inverted data. These heuristics inevitably suffer from some serious drawback. The masking of null values and discovered biclusters with random numbers may result in the phenomenon of random interference which in turn impacts the discovery of high quality biclusters. To address this issue and to further accelerate the biclustering process, we generalize the model of bicluster to incorporate null values and propose a probabilistic algorithm (FLOC) that can discover a set of k possibly overlapping biclusters simultaneously. Furthermore, this algorithm can easily be extended to support additional features that suit different requirements at virtually little cost. Experimental study on the yeast gene expression data shows that the FLOC algorithm can offer substantial improvements over the previously proposed algorithm.\",\"PeriodicalId\":178814,\"journal\":{\"name\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"342\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2003.1188969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 342

摘要

微阵列是实验分子生物学的最新突破之一,它提供了一个强大的工具,通过它可以同时监测数千个基因的表达模式,并且已经产生了大量有价值的数据。Cheng和Church(2000)引入了双聚类的概念,以捕捉基因子集和条件子集的一致性。设计了一套启发式算法,用于寻找一个或一组双聚类,该算法由屏蔽空值和发现的双聚类的迭代、粗节点和细节点的删除、节点的添加和反向数据的包含组成。这些启发式不可避免地存在一些严重的缺陷。用随机数掩盖空值和发现的双聚类可能会导致随机干扰现象,从而影响高质量双聚类的发现。为了解决这个问题并进一步加速双聚类过程,我们将双聚类模型推广到包含空值,并提出了一种可以同时发现k个可能重叠的双聚类的概率算法(FLOC)。此外,该算法可以很容易地扩展,以支持额外的功能,以满足不同的需求,几乎很少的成本。酵母基因表达数据的实验研究表明,FLOC算法比之前提出的算法有很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced biclustering on expression data
Microarrays are one of the latest breakthroughs in experimental molecular biology, which provide a powerful tool by which the expression patterns of thousands of genes can be monitored simultaneously and are already producing huge amount of valuable data. The concept of bicluster was introduced by Cheng and Church (2000) to capture the coherence of a subset of genes and a subset of conditions. A set of heuristic algorithms were also designed to either find one bicluster or a set of biclusters, which consist of iterations of masking null values and discovered biclusters, coarse and fine node deletion, node addition, and the inclusion of inverted data. These heuristics inevitably suffer from some serious drawback. The masking of null values and discovered biclusters with random numbers may result in the phenomenon of random interference which in turn impacts the discovery of high quality biclusters. To address this issue and to further accelerate the biclustering process, we generalize the model of bicluster to incorporate null values and propose a probabilistic algorithm (FLOC) that can discover a set of k possibly overlapping biclusters simultaneously. Furthermore, this algorithm can easily be extended to support additional features that suit different requirements at virtually little cost. Experimental study on the yeast gene expression data shows that the FLOC algorithm can offer substantial improvements over the previously proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信