通过可调损失函数实现gan

Gowtham R. Kurri, Tyler Sypherd, L. Sankar
{"title":"通过可调损失函数实现gan","authors":"Gowtham R. Kurri, Tyler Sypherd, L. Sankar","doi":"10.1109/ITW48936.2021.9611499","DOIUrl":null,"url":null,"abstract":"We introduce a tunable GAN, called $\\alpha$-GAN, parameterized by $\\alpha\\in$(0, $\\infty$], which interpolates between various f-GANs and Integral Probability Metric based GANs (under constrained discriminator set). We construct $\\alpha-$ GAN using a supervised loss function, namely, $\\alpha-$ loss, which is a tunable loss function capturing several canonical losses. We show that $\\alpha-$ GAN is intimately related to the Arimoto divergence, which was first proposed by Österriecher (1996), and later studied by Liese and Vajda (2006). We posit that the holistic understanding that $\\alpha-$ GAN introduces will have practical benefits of addressing both the issues of vanishing gradients and mode collapses.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Realizing GANs via a Tunable Loss Function\",\"authors\":\"Gowtham R. Kurri, Tyler Sypherd, L. Sankar\",\"doi\":\"10.1109/ITW48936.2021.9611499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a tunable GAN, called $\\\\alpha$-GAN, parameterized by $\\\\alpha\\\\in$(0, $\\\\infty$], which interpolates between various f-GANs and Integral Probability Metric based GANs (under constrained discriminator set). We construct $\\\\alpha-$ GAN using a supervised loss function, namely, $\\\\alpha-$ loss, which is a tunable loss function capturing several canonical losses. We show that $\\\\alpha-$ GAN is intimately related to the Arimoto divergence, which was first proposed by Österriecher (1996), and later studied by Liese and Vajda (2006). We posit that the holistic understanding that $\\\\alpha-$ GAN introduces will have practical benefits of addressing both the issues of vanishing gradients and mode collapses.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们引入了一种可调GAN,称为$\alpha$ -GAN,参数化为$\alpha\in$ (0, $\infty$),它在各种f-GAN和基于积分概率度量的GAN(在约束鉴别器集下)之间进行插值。我们使用监督损失函数(即$\alpha-$ loss)构造$\alpha-$ GAN,这是一个可调谐的损失函数,捕获了几个典型损失。我们表明$\alpha-$ GAN与Arimoto散度密切相关,Arimoto散度最早由Österriecher(1996)提出,后来由Liese和Vajda(2006)研究。我们假设$\alpha-$ GAN引入的整体理解将具有解决梯度消失和模态崩溃问题的实际好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizing GANs via a Tunable Loss Function
We introduce a tunable GAN, called $\alpha$-GAN, parameterized by $\alpha\in$(0, $\infty$], which interpolates between various f-GANs and Integral Probability Metric based GANs (under constrained discriminator set). We construct $\alpha-$ GAN using a supervised loss function, namely, $\alpha-$ loss, which is a tunable loss function capturing several canonical losses. We show that $\alpha-$ GAN is intimately related to the Arimoto divergence, which was first proposed by Österriecher (1996), and later studied by Liese and Vajda (2006). We posit that the holistic understanding that $\alpha-$ GAN introduces will have practical benefits of addressing both the issues of vanishing gradients and mode collapses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信