{"title":"基于模型预测控制的电动汽车电池热和座舱气候控制能量管理策略","authors":"Yuan Liu, Jie Zhang","doi":"10.1115/detc2020-22318","DOIUrl":null,"url":null,"abstract":"\n The energy management strategy plays a critical role in scheduling the operations and enhancing the overall efficiency for electric vehicles. This paper proposes an effective model predictive control-based (MPC) energy management strategy to simultaneously control the battery thermal management system (BTMS) and the cabin air conditioning (AC) system for electric vehicles (EVs). We aim to improve the overall energy efficiency, while retaining soft constraints from both BTMS and AC systems. It is implemented by optimizing the operation and discharging schedule to avoid peak load and by directly utilizing the regenerative power instead of recharging. Compared to the systematic performance without any control coordination between BTMS and AC, results reveal that there are a 4.3% reduction for the recharging energy, and a 6.5% improvement for the overall energy consumption that gained from the MPC-based energy management strategy. Overall the MPC-based energy management is a promising solution to enhance the efficiency for electric vehicles.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Model Predictive Control-Based Energy Management Strategy Considering Electric Vehicle Battery Thermal and Cabin Climate Control\",\"authors\":\"Yuan Liu, Jie Zhang\",\"doi\":\"10.1115/detc2020-22318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The energy management strategy plays a critical role in scheduling the operations and enhancing the overall efficiency for electric vehicles. This paper proposes an effective model predictive control-based (MPC) energy management strategy to simultaneously control the battery thermal management system (BTMS) and the cabin air conditioning (AC) system for electric vehicles (EVs). We aim to improve the overall energy efficiency, while retaining soft constraints from both BTMS and AC systems. It is implemented by optimizing the operation and discharging schedule to avoid peak load and by directly utilizing the regenerative power instead of recharging. Compared to the systematic performance without any control coordination between BTMS and AC, results reveal that there are a 4.3% reduction for the recharging energy, and a 6.5% improvement for the overall energy consumption that gained from the MPC-based energy management strategy. Overall the MPC-based energy management is a promising solution to enhance the efficiency for electric vehicles.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Model Predictive Control-Based Energy Management Strategy Considering Electric Vehicle Battery Thermal and Cabin Climate Control
The energy management strategy plays a critical role in scheduling the operations and enhancing the overall efficiency for electric vehicles. This paper proposes an effective model predictive control-based (MPC) energy management strategy to simultaneously control the battery thermal management system (BTMS) and the cabin air conditioning (AC) system for electric vehicles (EVs). We aim to improve the overall energy efficiency, while retaining soft constraints from both BTMS and AC systems. It is implemented by optimizing the operation and discharging schedule to avoid peak load and by directly utilizing the regenerative power instead of recharging. Compared to the systematic performance without any control coordination between BTMS and AC, results reveal that there are a 4.3% reduction for the recharging energy, and a 6.5% improvement for the overall energy consumption that gained from the MPC-based energy management strategy. Overall the MPC-based energy management is a promising solution to enhance the efficiency for electric vehicles.