时滞细胞神经网络的一个新的全局渐近稳定性结果

Jing Liu, Ce Zhang
{"title":"时滞细胞神经网络的一个新的全局渐近稳定性结果","authors":"Jing Liu, Ce Zhang","doi":"10.1109/CCDC.2009.5192532","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of global asymptotic stability for delayed cellular neural networks(DCNNs). A new stability condition is obtained by utilizing the Lyapunov functional method and the matrix inequality approach. This condition is less restrictive and generalizes some of the previous stability results derived in the literature.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new global asymptotic stability result for delayed cellular neural networks\",\"authors\":\"Jing Liu, Ce Zhang\",\"doi\":\"10.1109/CCDC.2009.5192532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of global asymptotic stability for delayed cellular neural networks(DCNNs). A new stability condition is obtained by utilizing the Lyapunov functional method and the matrix inequality approach. This condition is less restrictive and generalizes some of the previous stability results derived in the literature.\",\"PeriodicalId\":127110,\"journal\":{\"name\":\"2009 Chinese Control and Decision Conference\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2009.5192532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5192532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了延迟细胞神经网络的全局渐近稳定性问题。利用李雅普诺夫泛函方法和矩阵不等式方法,得到了一个新的稳定性条件。这个条件限制较少,并且推广了以前文献中得出的一些稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new global asymptotic stability result for delayed cellular neural networks
This paper studies the problem of global asymptotic stability for delayed cellular neural networks(DCNNs). A new stability condition is obtained by utilizing the Lyapunov functional method and the matrix inequality approach. This condition is less restrictive and generalizes some of the previous stability results derived in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信