{"title":"正规晶格超字符理论的结构","authors":"F. Aliniaeifard, N. Thiem","doi":"10.5802/alco.126","DOIUrl":null,"url":null,"abstract":"The character theory of finite groups has numerous basic questions that are often already quite involved: enumerating of irreducible characters, their character formulas, point-wise product decompositions, and restriction/induction between groups. A supercharacter theory is a framework for simplifying the character theory of a finite group, while ideally not losing all important information. This paper studies one such theory that straddles the gap between retaining valuable group information while reducing the above fundamental questions to more combinatorial lattice constructions.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"3 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The structure of normal lattice supercharacter theories\",\"authors\":\"F. Aliniaeifard, N. Thiem\",\"doi\":\"10.5802/alco.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The character theory of finite groups has numerous basic questions that are often already quite involved: enumerating of irreducible characters, their character formulas, point-wise product decompositions, and restriction/induction between groups. A supercharacter theory is a framework for simplifying the character theory of a finite group, while ideally not losing all important information. This paper studies one such theory that straddles the gap between retaining valuable group information while reducing the above fundamental questions to more combinatorial lattice constructions.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"3 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The structure of normal lattice supercharacter theories
The character theory of finite groups has numerous basic questions that are often already quite involved: enumerating of irreducible characters, their character formulas, point-wise product decompositions, and restriction/induction between groups. A supercharacter theory is a framework for simplifying the character theory of a finite group, while ideally not losing all important information. This paper studies one such theory that straddles the gap between retaining valuable group information while reducing the above fundamental questions to more combinatorial lattice constructions.