正规晶格超字符理论的结构

F. Aliniaeifard, N. Thiem
{"title":"正规晶格超字符理论的结构","authors":"F. Aliniaeifard, N. Thiem","doi":"10.5802/alco.126","DOIUrl":null,"url":null,"abstract":"The character theory of finite groups has numerous basic questions that are often already quite involved: enumerating of irreducible characters, their character formulas, point-wise product decompositions, and restriction/induction between groups. A supercharacter theory is a framework for simplifying the character theory of a finite group, while ideally not losing all important information. This paper studies one such theory that straddles the gap between retaining valuable group information while reducing the above fundamental questions to more combinatorial lattice constructions.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"3 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The structure of normal lattice supercharacter theories\",\"authors\":\"F. Aliniaeifard, N. Thiem\",\"doi\":\"10.5802/alco.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The character theory of finite groups has numerous basic questions that are often already quite involved: enumerating of irreducible characters, their character formulas, point-wise product decompositions, and restriction/induction between groups. A supercharacter theory is a framework for simplifying the character theory of a finite group, while ideally not losing all important information. This paper studies one such theory that straddles the gap between retaining valuable group information while reducing the above fundamental questions to more combinatorial lattice constructions.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"3 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

有限群的特征理论有许多基本问题,这些问题通常已经涉及到:不可约特征的枚举,它们的特征公式,点积分解,以及群之间的限制/归纳。超字符理论是一个简化有限群的字符理论的框架,理想情况下不丢失所有重要信息。本文研究了一个这样的理论,它跨越了保留有价值的群体信息与将上述基本问题简化为更组合的格结构之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The structure of normal lattice supercharacter theories
The character theory of finite groups has numerous basic questions that are often already quite involved: enumerating of irreducible characters, their character formulas, point-wise product decompositions, and restriction/induction between groups. A supercharacter theory is a framework for simplifying the character theory of a finite group, while ideally not losing all important information. This paper studies one such theory that straddles the gap between retaining valuable group information while reducing the above fundamental questions to more combinatorial lattice constructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信