基于正面熵不对称的人机交互情感脑机接口

Xuejie Liu, Lifeng You, Hongxi Li, Han Zhang
{"title":"基于正面熵不对称的人机交互情感脑机接口","authors":"Xuejie Liu, Lifeng You, Hongxi Li, Han Zhang","doi":"10.1109/CRC55853.2022.10041230","DOIUrl":null,"url":null,"abstract":"This paper aims to explore the frontal EEG correlates for an affective brain-computer interaction system in a social-life scenario. We first perform a multi-band decomposition on frontal EEG signals using complete ensemble empirical mode decomposition with adaptive noise. Then frontal asymmetric entropy features, including asymmetry of sample entropy and fuzzy entropy, as well as frontal transfer entropy, are proposed for emotion recognition. Those features are further selected by mutual information and ANOVA test, and classified by random forest and gradient boosting classifier. Average accuracies on the DEAP dataset are 71.09% for arousal, 77.34% for valence, on the human-machine affective interaction system are 84.51%, validating the reliability and effectiveness of the proposed features for emotion recognition.","PeriodicalId":275933,"journal":{"name":"2022 7th International Conference on Control, Robotics and Cybernetics (CRC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Affective Brain-Computer Interface using Frontal Entropy Asymmetry for Human- Machine Interaction\",\"authors\":\"Xuejie Liu, Lifeng You, Hongxi Li, Han Zhang\",\"doi\":\"10.1109/CRC55853.2022.10041230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to explore the frontal EEG correlates for an affective brain-computer interaction system in a social-life scenario. We first perform a multi-band decomposition on frontal EEG signals using complete ensemble empirical mode decomposition with adaptive noise. Then frontal asymmetric entropy features, including asymmetry of sample entropy and fuzzy entropy, as well as frontal transfer entropy, are proposed for emotion recognition. Those features are further selected by mutual information and ANOVA test, and classified by random forest and gradient boosting classifier. Average accuracies on the DEAP dataset are 71.09% for arousal, 77.34% for valence, on the human-machine affective interaction system are 84.51%, validating the reliability and effectiveness of the proposed features for emotion recognition.\",\"PeriodicalId\":275933,\"journal\":{\"name\":\"2022 7th International Conference on Control, Robotics and Cybernetics (CRC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Control, Robotics and Cybernetics (CRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRC55853.2022.10041230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Control, Robotics and Cybernetics (CRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRC55853.2022.10041230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在探讨社会生活情景下情感脑机交互系统的额叶脑电图相关因素。我们首先使用自适应噪声的完全集合经验模态分解对额叶脑电图信号进行多波段分解。然后提出了用于情绪识别的正面不对称熵特征,包括样本熵和模糊熵的不对称以及正面转移熵。通过互信息和方差分析进一步选择特征,并采用随机森林和梯度增强分类器进行分类。在DEAP数据集上,唤醒的平均准确率为71.09%,效价的平均准确率为77.34%,人机情感交互系统上的平均准确率为84.51%,验证了所提特征用于情感识别的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affective Brain-Computer Interface using Frontal Entropy Asymmetry for Human- Machine Interaction
This paper aims to explore the frontal EEG correlates for an affective brain-computer interaction system in a social-life scenario. We first perform a multi-band decomposition on frontal EEG signals using complete ensemble empirical mode decomposition with adaptive noise. Then frontal asymmetric entropy features, including asymmetry of sample entropy and fuzzy entropy, as well as frontal transfer entropy, are proposed for emotion recognition. Those features are further selected by mutual information and ANOVA test, and classified by random forest and gradient boosting classifier. Average accuracies on the DEAP dataset are 71.09% for arousal, 77.34% for valence, on the human-machine affective interaction system are 84.51%, validating the reliability and effectiveness of the proposed features for emotion recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信