{"title":"利用光谱图像和深度学习进行目标分类","authors":"C. López, Roman Jacome, Hans Garcia, H. Arguello","doi":"10.1109/ColCACI50549.2020.9248726","DOIUrl":null,"url":null,"abstract":"Spectral images contain valuable information across the electromagnetic spectrum, which provides a useful tool for classification tasks. Most of the traditional machine learning algorithms for spectral images classification such as support vector machine (SVM), k-nearest neighbor, or random forest required complex handcrafted features extraction of the data, in contrast with these approaches deep learning-based methods realize the feature extraction automatically. This paper proposes a procedure to classify spectral images with a Convolutional Neural Network (CNN) approach which consists in the experimental acquisition of two datasets, medicines and honey, the pre-processing of the raw data, the design of the (CNN) and finally the classification results performed by the designed CNN. The results of the first simulation of the proposed CNN-Med show accuracy in the validation set of up to 97.3% for the medicines dataset compared with 94.6% ResNet-18 architecture accuracy and 89.2% AlexNet architecture accuracy. The results of the proposed CNN-Honey show an accuracy, by patches, in the validation set of up to 92.11% for the honey dataset compared with 86.84% ResNet-18 architecture accuracy.","PeriodicalId":446750,"journal":{"name":"2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Object Classification Using Spectral Images and Deep Learning\",\"authors\":\"C. López, Roman Jacome, Hans Garcia, H. Arguello\",\"doi\":\"10.1109/ColCACI50549.2020.9248726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral images contain valuable information across the electromagnetic spectrum, which provides a useful tool for classification tasks. Most of the traditional machine learning algorithms for spectral images classification such as support vector machine (SVM), k-nearest neighbor, or random forest required complex handcrafted features extraction of the data, in contrast with these approaches deep learning-based methods realize the feature extraction automatically. This paper proposes a procedure to classify spectral images with a Convolutional Neural Network (CNN) approach which consists in the experimental acquisition of two datasets, medicines and honey, the pre-processing of the raw data, the design of the (CNN) and finally the classification results performed by the designed CNN. The results of the first simulation of the proposed CNN-Med show accuracy in the validation set of up to 97.3% for the medicines dataset compared with 94.6% ResNet-18 architecture accuracy and 89.2% AlexNet architecture accuracy. The results of the proposed CNN-Honey show an accuracy, by patches, in the validation set of up to 92.11% for the honey dataset compared with 86.84% ResNet-18 architecture accuracy.\",\"PeriodicalId\":446750,\"journal\":{\"name\":\"2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ColCACI50549.2020.9248726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ColCACI50549.2020.9248726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Object Classification Using Spectral Images and Deep Learning
Spectral images contain valuable information across the electromagnetic spectrum, which provides a useful tool for classification tasks. Most of the traditional machine learning algorithms for spectral images classification such as support vector machine (SVM), k-nearest neighbor, or random forest required complex handcrafted features extraction of the data, in contrast with these approaches deep learning-based methods realize the feature extraction automatically. This paper proposes a procedure to classify spectral images with a Convolutional Neural Network (CNN) approach which consists in the experimental acquisition of two datasets, medicines and honey, the pre-processing of the raw data, the design of the (CNN) and finally the classification results performed by the designed CNN. The results of the first simulation of the proposed CNN-Med show accuracy in the validation set of up to 97.3% for the medicines dataset compared with 94.6% ResNet-18 architecture accuracy and 89.2% AlexNet architecture accuracy. The results of the proposed CNN-Honey show an accuracy, by patches, in the validation set of up to 92.11% for the honey dataset compared with 86.84% ResNet-18 architecture accuracy.