初等分数偶极子

M. V. Ivakhnychenko, E. Veliev
{"title":"初等分数偶极子","authors":"M. V. Ivakhnychenko, E. Veliev","doi":"10.1109/MMET.2006.1689830","DOIUrl":null,"url":null,"abstract":"In this paper the fractional curl operator curlalpha is applied to obtain fractional sources as a generalization of the electric and magnetic Hertz dipoles. A physical meaning of the fractional curl operator in considered problem is shown: curlalpha results in the coupling of the original electric and magnetic currents. For the values of the fractional order alpha between zero and one, the fractional sources can be treated as intermediate sources between the electric and magnetic sources. Expressions for the fractional fields and fractional sources are presented","PeriodicalId":236672,"journal":{"name":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Elementary Fractional Dipoles\",\"authors\":\"M. V. Ivakhnychenko, E. Veliev\",\"doi\":\"10.1109/MMET.2006.1689830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the fractional curl operator curlalpha is applied to obtain fractional sources as a generalization of the electric and magnetic Hertz dipoles. A physical meaning of the fractional curl operator in considered problem is shown: curlalpha results in the coupling of the original electric and magnetic currents. For the values of the fractional order alpha between zero and one, the fractional sources can be treated as intermediate sources between the electric and magnetic sources. Expressions for the fractional fields and fractional sources are presented\",\"PeriodicalId\":236672,\"journal\":{\"name\":\"2006 International Conference on Mathematical Methods in Electromagnetic Theory\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Mathematical Methods in Electromagnetic Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2006.1689830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2006.1689830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文应用分数旋度算子curlalpha作为赫兹电偶极子和磁偶极子的推广来获得分数源。给出了分数旋度算子在考虑的问题中的物理意义:旋度导致原始电流和磁场电流的耦合。对于分数阶α在0 ~ 1之间的值,分数阶源可以看作是介于电源和磁源之间的中间源。给出了分数域和分数源的表达式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elementary Fractional Dipoles
In this paper the fractional curl operator curlalpha is applied to obtain fractional sources as a generalization of the electric and magnetic Hertz dipoles. A physical meaning of the fractional curl operator in considered problem is shown: curlalpha results in the coupling of the original electric and magnetic currents. For the values of the fractional order alpha between zero and one, the fractional sources can be treated as intermediate sources between the electric and magnetic sources. Expressions for the fractional fields and fractional sources are presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信