Qi Zhao, Bingqian Wang, Gan Zhou, Wenfeng Zhang, XiuMei Guan, W. Feng
{"title":"基于支持向量机的改进故障诊断方法","authors":"Qi Zhao, Bingqian Wang, Gan Zhou, Wenfeng Zhang, XiuMei Guan, W. Feng","doi":"10.1109/ICPHM.2016.7542827","DOIUrl":null,"url":null,"abstract":"Fault diagnosis is extremely important for guaranteeing safe and reliable operation of modern industrial process. As an active branch of fault diagnosis, data-driven methods attract more and more attention in recent years, because they solely depend on information collected in historical databases. The support vector machine (SVM), aims at minimizing the structural risk, exhibits superior generalization ability, and succeeds in the nonlinear classification problem. This paper proposes an improved SVM based fault diagnosis framework, which consists of two primary components: (1) feature extraction; (2) classification. More specifically, multi-scale principal component analysis (MSPCA) is performed to achieve multi-scale analysis and dimension reduction. Classification combines SVM classifier with parameters optimization method, which further encompasses grid search (GS) and particle swarm optimization (PSO). To demonstrate the accuracy and efficiency of our approach, we perform experiments on the classical Tennessee Eastman (TE) process.","PeriodicalId":140911,"journal":{"name":"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved fault diagnosis approach based on support vector machine\",\"authors\":\"Qi Zhao, Bingqian Wang, Gan Zhou, Wenfeng Zhang, XiuMei Guan, W. Feng\",\"doi\":\"10.1109/ICPHM.2016.7542827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis is extremely important for guaranteeing safe and reliable operation of modern industrial process. As an active branch of fault diagnosis, data-driven methods attract more and more attention in recent years, because they solely depend on information collected in historical databases. The support vector machine (SVM), aims at minimizing the structural risk, exhibits superior generalization ability, and succeeds in the nonlinear classification problem. This paper proposes an improved SVM based fault diagnosis framework, which consists of two primary components: (1) feature extraction; (2) classification. More specifically, multi-scale principal component analysis (MSPCA) is performed to achieve multi-scale analysis and dimension reduction. Classification combines SVM classifier with parameters optimization method, which further encompasses grid search (GS) and particle swarm optimization (PSO). To demonstrate the accuracy and efficiency of our approach, we perform experiments on the classical Tennessee Eastman (TE) process.\",\"PeriodicalId\":140911,\"journal\":{\"name\":\"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2016.7542827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2016.7542827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An improved fault diagnosis approach based on support vector machine
Fault diagnosis is extremely important for guaranteeing safe and reliable operation of modern industrial process. As an active branch of fault diagnosis, data-driven methods attract more and more attention in recent years, because they solely depend on information collected in historical databases. The support vector machine (SVM), aims at minimizing the structural risk, exhibits superior generalization ability, and succeeds in the nonlinear classification problem. This paper proposes an improved SVM based fault diagnosis framework, which consists of two primary components: (1) feature extraction; (2) classification. More specifically, multi-scale principal component analysis (MSPCA) is performed to achieve multi-scale analysis and dimension reduction. Classification combines SVM classifier with parameters optimization method, which further encompasses grid search (GS) and particle swarm optimization (PSO). To demonstrate the accuracy and efficiency of our approach, we perform experiments on the classical Tennessee Eastman (TE) process.