唯一二部完美匹配的代数表示

Gal Beniamini
{"title":"唯一二部完美匹配的代数表示","authors":"Gal Beniamini","doi":"10.48550/arXiv.2203.01071","DOIUrl":null,"url":null,"abstract":"We obtain complete characterizations of the Unique Bipartite Perfect Matching function, and of its Boolean dual, using multilinear polynomials over the reals. Building on previous results, we show that, surprisingly, the dual description is sparse and has low $\\ell_1$-norm -- only exponential in $\\Theta(n \\log n)$, and this result extends even to other families of matching-related functions. Our approach relies on the M\\\"obius numbers in the matching-covered lattice, and a key ingredient in our proof is M\\\"obius' inversion formula. These polynomial representations yield complexity-theoretic results. For instance, we show that unique bipartite matching is evasive for classical decision trees, and nearly evasive even for generalized query models. We also obtain a tight $\\Theta(n \\log n)$ bound on the log-rank of the associated two-party communication task.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algebraic Representations of Unique Bipartite Perfect Matching\",\"authors\":\"Gal Beniamini\",\"doi\":\"10.48550/arXiv.2203.01071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain complete characterizations of the Unique Bipartite Perfect Matching function, and of its Boolean dual, using multilinear polynomials over the reals. Building on previous results, we show that, surprisingly, the dual description is sparse and has low $\\\\ell_1$-norm -- only exponential in $\\\\Theta(n \\\\log n)$, and this result extends even to other families of matching-related functions. Our approach relies on the M\\\\\\\"obius numbers in the matching-covered lattice, and a key ingredient in our proof is M\\\\\\\"obius' inversion formula. These polynomial representations yield complexity-theoretic results. For instance, we show that unique bipartite matching is evasive for classical decision trees, and nearly evasive even for generalized query models. We also obtain a tight $\\\\Theta(n \\\\log n)$ bound on the log-rank of the associated two-party communication task.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.01071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.01071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用实数上的多元线性多项式,我们得到了唯一二部完美匹配函数及其布尔对偶的完备刻画。在先前结果的基础上,我们表明,令人惊讶的是,对偶描述是稀疏的,并且在$\Theta(n \log n)$中具有低$\ell_1$ -范数-仅指数,并且该结果甚至扩展到其他匹配相关函数族。我们的方法依赖于匹配覆盖晶格中的Möbius数字,而我们证明中的一个关键成分是Möbius'反转公式。这些多项式表示产生了复杂性理论的结果。例如,我们证明了唯一二部匹配对于经典决策树是回避的,甚至对于广义查询模型也是几乎回避的。我们还获得了关联的双方通信任务的日志等级的紧密$\Theta(n \log n)$界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Representations of Unique Bipartite Perfect Matching
We obtain complete characterizations of the Unique Bipartite Perfect Matching function, and of its Boolean dual, using multilinear polynomials over the reals. Building on previous results, we show that, surprisingly, the dual description is sparse and has low $\ell_1$-norm -- only exponential in $\Theta(n \log n)$, and this result extends even to other families of matching-related functions. Our approach relies on the M\"obius numbers in the matching-covered lattice, and a key ingredient in our proof is M\"obius' inversion formula. These polynomial representations yield complexity-theoretic results. For instance, we show that unique bipartite matching is evasive for classical decision trees, and nearly evasive even for generalized query models. We also obtain a tight $\Theta(n \log n)$ bound on the log-rank of the associated two-party communication task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信