源代码抄袭检测:Unix方式

Juraj Petrík, D. Chudá, Branislav Steinmüller
{"title":"源代码抄袭检测:Unix方式","authors":"Juraj Petrík, D. Chudá, Branislav Steinmüller","doi":"10.1109/SAMI.2017.7880355","DOIUrl":null,"url":null,"abstract":"The paper describes similarity detection method for language independent source code similarity detection. It is based on idea of maximum reusability of standard Unix filters. This method was implemented and benchmarked with different datasets from real world (students' assignments) and also synthetic datasets (perfect plagiarism experiment). Our method achieved significantly better results than competitors, which are considered as gold standard in plagiarism detection.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Source code plagiarism detection: The Unix way\",\"authors\":\"Juraj Petrík, D. Chudá, Branislav Steinmüller\",\"doi\":\"10.1109/SAMI.2017.7880355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes similarity detection method for language independent source code similarity detection. It is based on idea of maximum reusability of standard Unix filters. This method was implemented and benchmarked with different datasets from real world (students' assignments) and also synthetic datasets (perfect plagiarism experiment). Our method achieved significantly better results than competitors, which are considered as gold standard in plagiarism detection.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种独立于语言的源代码相似度检测方法。它基于标准Unix过滤器的最大可重用性的思想。该方法使用来自真实世界的不同数据集(学生作业)和合成数据集(完美抄袭实验)来实现和基准测试。我们的方法取得了明显优于竞争对手的结果,这被认为是抄袭检测的金标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source code plagiarism detection: The Unix way
The paper describes similarity detection method for language independent source code similarity detection. It is based on idea of maximum reusability of standard Unix filters. This method was implemented and benchmarked with different datasets from real world (students' assignments) and also synthetic datasets (perfect plagiarism experiment). Our method achieved significantly better results than competitors, which are considered as gold standard in plagiarism detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信