{"title":"宽带应用中偶极天线的等效电路","authors":"Binwen Wang, Hui Ning, Youjie Yan, Chengyun Cao, Meiqi Zhu","doi":"10.13052/2023.aces.j.380403","DOIUrl":null,"url":null,"abstract":"In this paper distributed parameter equivalent circuits are developed for linear dipoles, dielectric coated dipoles and lumped loaded dipoles. Theoretical solutions for each distributed parameter and the reasonable non-uniform segmentation of antennas serve as the foundation for the derivation. The accomplished validations of the modeling procedures indicate that the given equivalent circuits are capable of correctly describing dipole antennas in frequency and time domains, with the advantages of wideband, frequency independence and unambiguous physical meaning. Relying on the presented equivalent circuits, broadband issues such as simulating input impedance, predicting equivalent lengths and computing transient responses of dipole antennas can be readily addressed. In addition, the circuit model provides helpful insights into the analysis and design for the loaded dipole antennas.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalent Circuits of Dipole Antennas for Broadband Applications\",\"authors\":\"Binwen Wang, Hui Ning, Youjie Yan, Chengyun Cao, Meiqi Zhu\",\"doi\":\"10.13052/2023.aces.j.380403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper distributed parameter equivalent circuits are developed for linear dipoles, dielectric coated dipoles and lumped loaded dipoles. Theoretical solutions for each distributed parameter and the reasonable non-uniform segmentation of antennas serve as the foundation for the derivation. The accomplished validations of the modeling procedures indicate that the given equivalent circuits are capable of correctly describing dipole antennas in frequency and time domains, with the advantages of wideband, frequency independence and unambiguous physical meaning. Relying on the presented equivalent circuits, broadband issues such as simulating input impedance, predicting equivalent lengths and computing transient responses of dipole antennas can be readily addressed. In addition, the circuit model provides helpful insights into the analysis and design for the loaded dipole antennas.\",\"PeriodicalId\":250668,\"journal\":{\"name\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.380403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.380403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Equivalent Circuits of Dipole Antennas for Broadband Applications
In this paper distributed parameter equivalent circuits are developed for linear dipoles, dielectric coated dipoles and lumped loaded dipoles. Theoretical solutions for each distributed parameter and the reasonable non-uniform segmentation of antennas serve as the foundation for the derivation. The accomplished validations of the modeling procedures indicate that the given equivalent circuits are capable of correctly describing dipole antennas in frequency and time domains, with the advantages of wideband, frequency independence and unambiguous physical meaning. Relying on the presented equivalent circuits, broadband issues such as simulating input impedance, predicting equivalent lengths and computing transient responses of dipole antennas can be readily addressed. In addition, the circuit model provides helpful insights into the analysis and design for the loaded dipole antennas.