C. Rathnayaka, C. Karunasena, W. Senadeera, Yuantong T. Gu
{"title":"模拟不同植物细胞的三维细胞微流体,预测细胞在外部机械压缩下的变形:基于sph - cg的计算研究","authors":"C. Rathnayaka, C. Karunasena, W. Senadeera, Yuantong T. Gu","doi":"10.14264/1374f47","DOIUrl":null,"url":null,"abstract":"Computational modelling of plant cellular materials and relevant mechanics are of interest in numerous research fields. Depending on the complex fluid and solid mechanics involved, there are many numerical modelling approaches applicable in the development of such computational models. This research investigation focuses on computational modelling threedimensional (3-D) microfluidics of parenchyma cells of three different plant cellular materials: apple, potato and grape with the intention of studying corresponding physical deformations under external mechanical compression which potentially can derive valuable insights about processing of such plant materials. A coupled Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) approach has been utilised to numerically model the cell fluid and cell wall mechanics, respectively. Quantitative simulation results indicated almost similar cell deformations yielding to top and bottom flat surfaces. In terms of stress-strain behaviour, apple and grape cells revealed stiffer behaviour relative the potato cell. It is evident based on this study that depending on the differences of physical properties of plant cells, their behaviour under compression varies. Findings of this research can be potentially beneficial in further studies towards prediction of 3-D tissue deformation under external mechanical loading.","PeriodicalId":369158,"journal":{"name":"Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling 3-D cellular microfluidics of different plant cells for the prediction of cellular deformations under external mechanical compression: A SPH-CG-based computational study\",\"authors\":\"C. Rathnayaka, C. Karunasena, W. Senadeera, Yuantong T. Gu\",\"doi\":\"10.14264/1374f47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational modelling of plant cellular materials and relevant mechanics are of interest in numerous research fields. Depending on the complex fluid and solid mechanics involved, there are many numerical modelling approaches applicable in the development of such computational models. This research investigation focuses on computational modelling threedimensional (3-D) microfluidics of parenchyma cells of three different plant cellular materials: apple, potato and grape with the intention of studying corresponding physical deformations under external mechanical compression which potentially can derive valuable insights about processing of such plant materials. A coupled Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) approach has been utilised to numerically model the cell fluid and cell wall mechanics, respectively. Quantitative simulation results indicated almost similar cell deformations yielding to top and bottom flat surfaces. In terms of stress-strain behaviour, apple and grape cells revealed stiffer behaviour relative the potato cell. It is evident based on this study that depending on the differences of physical properties of plant cells, their behaviour under compression varies. Findings of this research can be potentially beneficial in further studies towards prediction of 3-D tissue deformation under external mechanical loading.\",\"PeriodicalId\":369158,\"journal\":{\"name\":\"Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14264/1374f47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14264/1374f47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling 3-D cellular microfluidics of different plant cells for the prediction of cellular deformations under external mechanical compression: A SPH-CG-based computational study
Computational modelling of plant cellular materials and relevant mechanics are of interest in numerous research fields. Depending on the complex fluid and solid mechanics involved, there are many numerical modelling approaches applicable in the development of such computational models. This research investigation focuses on computational modelling threedimensional (3-D) microfluidics of parenchyma cells of three different plant cellular materials: apple, potato and grape with the intention of studying corresponding physical deformations under external mechanical compression which potentially can derive valuable insights about processing of such plant materials. A coupled Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) approach has been utilised to numerically model the cell fluid and cell wall mechanics, respectively. Quantitative simulation results indicated almost similar cell deformations yielding to top and bottom flat surfaces. In terms of stress-strain behaviour, apple and grape cells revealed stiffer behaviour relative the potato cell. It is evident based on this study that depending on the differences of physical properties of plant cells, their behaviour under compression varies. Findings of this research can be potentially beneficial in further studies towards prediction of 3-D tissue deformation under external mechanical loading.