模型不确定度在测量中的表达

C. Palmisano, G. Mana
{"title":"模型不确定度在测量中的表达","authors":"C. Palmisano, G. Mana","doi":"10.1142/S0217979215410027","DOIUrl":null,"url":null,"abstract":"The measurand value, the conclusions, and the decisions inferred from measurements may depend on the models used to explain and to analyze the results. In this paper, the problems of identifying the most appropriate model and of assessing the model contribution to the uncertainty are formulated and solved in terms of Bayesian model selection and model averaging. The computational cost of this approach increases with the dimensionality of the problem. Therefore, a numerical strategy to integrate over the nuisance parameters and to compute and to sample the measurand post-data distribution is also outlined.","PeriodicalId":256575,"journal":{"name":"29th Conference on Precision Electromagnetic Measurements (CPEM 2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The expression of the model uncertainty in measurements\",\"authors\":\"C. Palmisano, G. Mana\",\"doi\":\"10.1142/S0217979215410027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measurand value, the conclusions, and the decisions inferred from measurements may depend on the models used to explain and to analyze the results. In this paper, the problems of identifying the most appropriate model and of assessing the model contribution to the uncertainty are formulated and solved in terms of Bayesian model selection and model averaging. The computational cost of this approach increases with the dimensionality of the problem. Therefore, a numerical strategy to integrate over the nuisance parameters and to compute and to sample the measurand post-data distribution is also outlined.\",\"PeriodicalId\":256575,\"journal\":{\"name\":\"29th Conference on Precision Electromagnetic Measurements (CPEM 2014)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th Conference on Precision Electromagnetic Measurements (CPEM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217979215410027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th Conference on Precision Electromagnetic Measurements (CPEM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217979215410027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

测量值、结论和从测量中推断出的决定可能依赖于用于解释和分析结果的模型。本文从贝叶斯模型选择和模型平均的角度阐述并解决了确定最合适的模型和评估模型对不确定性的贡献的问题。这种方法的计算成本随着问题的维数增加而增加。因此,还概述了一种对干扰参数进行积分并计算和采样测量和后期数据分布的数值策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The expression of the model uncertainty in measurements
The measurand value, the conclusions, and the decisions inferred from measurements may depend on the models used to explain and to analyze the results. In this paper, the problems of identifying the most appropriate model and of assessing the model contribution to the uncertainty are formulated and solved in terms of Bayesian model selection and model averaging. The computational cost of this approach increases with the dimensionality of the problem. Therefore, a numerical strategy to integrate over the nuisance parameters and to compute and to sample the measurand post-data distribution is also outlined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信