一种改进的FCM自动聚类算法

Fuhua Yu, Hongke Xu, Limin Wang, Xiaojian Zhou
{"title":"一种改进的FCM自动聚类算法","authors":"Fuhua Yu, Hongke Xu, Limin Wang, Xiaojian Zhou","doi":"10.1109/DBTA.2010.5659043","DOIUrl":null,"url":null,"abstract":"For the limited application and shortcoming of FCM (Fuzzy C-Means) clustering algorithm, an improved automatic FCM clustering algorithm is put forward. First, the fuzzy equivalent matrix is achieved by fuzzier the standard uniform data sets; then, the objective function of the improved automatic FCM clustering algorithm is optimized by the amendment of membership function and distance measuring function; The Lagrange multiplier optimization algorithm is calculated to update iteration of membership degree and clustering center. Finally, the automatic clustering is obtained by the degree of cohesion and separation. The traffic flow data of an extra long highway tunnel in Shaanxi is taken as an actual example to apply the improved automatic FCM clustering algorithm. The clustering result shows that the validity of clustering is improved using the improved automatic FCM algorithm.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Improved Automatic FCM Clustering Algorithm\",\"authors\":\"Fuhua Yu, Hongke Xu, Limin Wang, Xiaojian Zhou\",\"doi\":\"10.1109/DBTA.2010.5659043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the limited application and shortcoming of FCM (Fuzzy C-Means) clustering algorithm, an improved automatic FCM clustering algorithm is put forward. First, the fuzzy equivalent matrix is achieved by fuzzier the standard uniform data sets; then, the objective function of the improved automatic FCM clustering algorithm is optimized by the amendment of membership function and distance measuring function; The Lagrange multiplier optimization algorithm is calculated to update iteration of membership degree and clustering center. Finally, the automatic clustering is obtained by the degree of cohesion and separation. The traffic flow data of an extra long highway tunnel in Shaanxi is taken as an actual example to apply the improved automatic FCM clustering algorithm. The clustering result shows that the validity of clustering is improved using the improved automatic FCM algorithm.\",\"PeriodicalId\":320509,\"journal\":{\"name\":\"2010 2nd International Workshop on Database Technology and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Database Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBTA.2010.5659043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

针对FCM (Fuzzy C-Means)聚类算法的局限性和不足,提出了一种改进的FCM自动聚类算法。首先,对标准均匀数据集进行模糊处理,得到模糊等价矩阵;然后,通过修正隶属函数和距离度量函数,优化改进的自动FCM聚类算法的目标函数;采用拉格朗日乘数优化算法更新隶属度迭代和聚类中心迭代。最后,根据图像的内聚度和分离度进行自动聚类。以陕西某超长公路隧道的交通流数据为例,应用改进的自动FCM聚类算法。聚类结果表明,改进的自动FCM算法提高了聚类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Automatic FCM Clustering Algorithm
For the limited application and shortcoming of FCM (Fuzzy C-Means) clustering algorithm, an improved automatic FCM clustering algorithm is put forward. First, the fuzzy equivalent matrix is achieved by fuzzier the standard uniform data sets; then, the objective function of the improved automatic FCM clustering algorithm is optimized by the amendment of membership function and distance measuring function; The Lagrange multiplier optimization algorithm is calculated to update iteration of membership degree and clustering center. Finally, the automatic clustering is obtained by the degree of cohesion and separation. The traffic flow data of an extra long highway tunnel in Shaanxi is taken as an actual example to apply the improved automatic FCM clustering algorithm. The clustering result shows that the validity of clustering is improved using the improved automatic FCM algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信