{"title":"单因素Hensel提升及其在某些多项式直线复杂度中的应用","authors":"E. Kaltofen","doi":"10.1145/28395.28443","DOIUrl":null,"url":null,"abstract":"Three theorems are presented that establish polynomial straight-line complexity for certain operations on polynomials given by straight-line programs of unbounded input degree. The first theorem shows how to compute a higher order partial derivative in a single variable. The other two theorems impose the degree of the output polynomial as a parameter of the length of the output program. First it is shown that if a straight-line program computes an arbitrary power of a multivariate polynomial, that polynomial also admits a polynomial bounded straight-line computation. Second, any factor of a multivariate polynomial given by a division-free straight-line program with relatively prime co-factor also admits a straight-line computation of length polynomial in the input length and the degree of the factor. This result is based on a new Hensel lifting process, one where only one factor image is lifted back to the original factor. As an application we get that the greatest common divisor of polynomials given by a division-free straight-line program has polynomial straight-line complexity in terms of the input length and its own degree.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials\",\"authors\":\"E. Kaltofen\",\"doi\":\"10.1145/28395.28443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three theorems are presented that establish polynomial straight-line complexity for certain operations on polynomials given by straight-line programs of unbounded input degree. The first theorem shows how to compute a higher order partial derivative in a single variable. The other two theorems impose the degree of the output polynomial as a parameter of the length of the output program. First it is shown that if a straight-line program computes an arbitrary power of a multivariate polynomial, that polynomial also admits a polynomial bounded straight-line computation. Second, any factor of a multivariate polynomial given by a division-free straight-line program with relatively prime co-factor also admits a straight-line computation of length polynomial in the input length and the degree of the factor. This result is based on a new Hensel lifting process, one where only one factor image is lifted back to the original factor. As an application we get that the greatest common divisor of polynomials given by a division-free straight-line program has polynomial straight-line complexity in terms of the input length and its own degree.\",\"PeriodicalId\":161795,\"journal\":{\"name\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/28395.28443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials
Three theorems are presented that establish polynomial straight-line complexity for certain operations on polynomials given by straight-line programs of unbounded input degree. The first theorem shows how to compute a higher order partial derivative in a single variable. The other two theorems impose the degree of the output polynomial as a parameter of the length of the output program. First it is shown that if a straight-line program computes an arbitrary power of a multivariate polynomial, that polynomial also admits a polynomial bounded straight-line computation. Second, any factor of a multivariate polynomial given by a division-free straight-line program with relatively prime co-factor also admits a straight-line computation of length polynomial in the input length and the degree of the factor. This result is based on a new Hensel lifting process, one where only one factor image is lifted back to the original factor. As an application we get that the greatest common divisor of polynomials given by a division-free straight-line program has polynomial straight-line complexity in terms of the input length and its own degree.