动态变量自适应算法

J. Morimoto, H. Kasamatsu, Y. Yamamoto, I. Kobayashi, N. Furumoto, T. Tabuchi
{"title":"动态变量自适应算法","authors":"J. Morimoto, H. Kasamatsu, Y. Yamamoto, I. Kobayashi, N. Furumoto, T. Tabuchi","doi":"10.1109/SICE.2001.977804","DOIUrl":null,"url":null,"abstract":"Variations of the statistical properties of system inputs may cause a fall of adaptation abilities of the adaptive algorithms. To overcome this problem, we propose a dynamically-changing method of the form of the adaptive algorithms among Kalman filter based, normalized least mean square and recursive least squares methods. The validity of our method was confirmed in the numerical experiments.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamically-variable adaptive algorithms\",\"authors\":\"J. Morimoto, H. Kasamatsu, Y. Yamamoto, I. Kobayashi, N. Furumoto, T. Tabuchi\",\"doi\":\"10.1109/SICE.2001.977804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variations of the statistical properties of system inputs may cause a fall of adaptation abilities of the adaptive algorithms. To overcome this problem, we propose a dynamically-changing method of the form of the adaptive algorithms among Kalman filter based, normalized least mean square and recursive least squares methods. The validity of our method was confirmed in the numerical experiments.\",\"PeriodicalId\":415046,\"journal\":{\"name\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2001.977804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

系统输入统计特性的变化会导致自适应算法的自适应能力下降。为了克服这一问题,我们提出了一种动态变化形式的自适应算法,结合基于卡尔曼滤波、归一化最小均方和递归最小二乘法的自适应算法。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamically-variable adaptive algorithms
Variations of the statistical properties of system inputs may cause a fall of adaptation abilities of the adaptive algorithms. To overcome this problem, we propose a dynamically-changing method of the form of the adaptive algorithms among Kalman filter based, normalized least mean square and recursive least squares methods. The validity of our method was confirmed in the numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信