多变量自适应样条回归(MARS)和随机森林(RF)耦合:一种实际的混合特征选择方法

Arpita Nagpal, Singh Vijendra
{"title":"多变量自适应样条回归(MARS)和随机森林(RF)耦合:一种实际的混合特征选择方法","authors":"Arpita Nagpal, Singh Vijendra","doi":"10.4018/IJHISI.2019010101","DOIUrl":null,"url":null,"abstract":"In this article, a new algorithm to select the relevant features is proposed for handling microarray data with the specific aim of increasing classification accuracy. In particular, the optimal genes are extracted using filter and wrapper feature selection algorithms. Here, the use of non-parametric regression algorithm called Multivariate Adaptive Regression Spline (MARS) followed by proposed Random Forest Statistical Test (RFST) algorithm are being studied. The study evaluates the comparative performance of the results of RFST and MARS with existing algorithms on ten standard microarray datasets. For performance analysis, three parameters are taken into consideration, namely, the number of selected features, runtime, and classification accuracy. Experimental results indicate that different feature selection algorithms yield different candidate gene subset; therefore, a Hybrid approach is applied to determine the best candidate genes to provide maximum information about the disease. The findings foretell that the RFST is performing better on six out of ten datasets whereas MARS is performing better on other datasets.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"1995 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coupling Multivariate Adaptive Regression Spline (MARS) and Random Forest (RF): A Hybrid Feature Selection Method in Action\",\"authors\":\"Arpita Nagpal, Singh Vijendra\",\"doi\":\"10.4018/IJHISI.2019010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a new algorithm to select the relevant features is proposed for handling microarray data with the specific aim of increasing classification accuracy. In particular, the optimal genes are extracted using filter and wrapper feature selection algorithms. Here, the use of non-parametric regression algorithm called Multivariate Adaptive Regression Spline (MARS) followed by proposed Random Forest Statistical Test (RFST) algorithm are being studied. The study evaluates the comparative performance of the results of RFST and MARS with existing algorithms on ten standard microarray datasets. For performance analysis, three parameters are taken into consideration, namely, the number of selected features, runtime, and classification accuracy. Experimental results indicate that different feature selection algorithms yield different candidate gene subset; therefore, a Hybrid approach is applied to determine the best candidate genes to provide maximum information about the disease. The findings foretell that the RFST is performing better on six out of ten datasets whereas MARS is performing better on other datasets.\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"1995 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJHISI.2019010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHISI.2019010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的算法来选择相关特征来处理微阵列数据,以提高分类精度。特别地,使用过滤器和包装器特征选择算法提取最优基因。在这里,使用非参数回归算法称为多元自适应回归样条(MARS),随后提出随机森林统计检验(RFST)算法进行研究。该研究评估了RFST和MARS与现有算法在10个标准微阵列数据集上的比较性能。对于性能分析,考虑三个参数,即选择特征的数量、运行时间和分类精度。实验结果表明,不同的特征选择算法产生不同的候选基因子集;因此,采用杂交方法来确定最佳候选基因,以提供有关该疾病的最大信息。研究结果表明,RFST在6 / 10的数据集上表现更好,而MARS在其他数据集上表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling Multivariate Adaptive Regression Spline (MARS) and Random Forest (RF): A Hybrid Feature Selection Method in Action
In this article, a new algorithm to select the relevant features is proposed for handling microarray data with the specific aim of increasing classification accuracy. In particular, the optimal genes are extracted using filter and wrapper feature selection algorithms. Here, the use of non-parametric regression algorithm called Multivariate Adaptive Regression Spline (MARS) followed by proposed Random Forest Statistical Test (RFST) algorithm are being studied. The study evaluates the comparative performance of the results of RFST and MARS with existing algorithms on ten standard microarray datasets. For performance analysis, three parameters are taken into consideration, namely, the number of selected features, runtime, and classification accuracy. Experimental results indicate that different feature selection algorithms yield different candidate gene subset; therefore, a Hybrid approach is applied to determine the best candidate genes to provide maximum information about the disease. The findings foretell that the RFST is performing better on six out of ten datasets whereas MARS is performing better on other datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信