阐明多参考问题中总电子能量对分子轨道的依赖性。

Jan-Niklas Boyn, D. Mazziotti
{"title":"阐明多参考问题中总电子能量对分子轨道的依赖性。","authors":"Jan-Niklas Boyn, D. Mazziotti","doi":"10.1063/5.0090342","DOIUrl":null,"url":null,"abstract":"The accurate resolution of the chemical properties of strongly correlated systems, such as biradicals, requires the use of electronic structure theories that account for both multi-reference and dynamic correlation effects. A variety of methods exist that aim to resolve the dynamic correlation in multi-reference problems, commonly relying on an exponentially scaling complete-active-space self-consistent-field (CASSCF) calculation to generate reference molecular orbitals (MOs). However, while CASSCF orbitals provide the optimal solution for a selected set of correlated (active) orbitals, their suitability in the quest for the resolution of the total correlation energy has not been thoroughly investigated. Recent research has shown the ability of Kohn-Shan density functional theory to provide improved orbitals for coupled cluster (CC) and Møller-Plesset perturbation theory (MP) calculations. Here, we extend the search for optimal and more cost effective MOs to post-configuration-interaction [post-(CI)] methods, surveying the ability of the MOs obtained with various density functional theory (DFT) functionals, as well as Hartree-Fock and CC and MP calculations to accurately capture the total electronic correlation energy. Applying the anti-Hermitian contracted Schrödinger equation to the dissociation of N2, the calculation of biradical singlet-triplet gaps, and the transition states of bicylobutane isomerization, we demonstrate that DFT provides a cost-effective alternative to CASSCF in providing reference orbitals for post-CI dynamic correlation calculations.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elucidating the molecular orbital dependence of the total electronic energy in multireference problems.\",\"authors\":\"Jan-Niklas Boyn, D. Mazziotti\",\"doi\":\"10.1063/5.0090342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate resolution of the chemical properties of strongly correlated systems, such as biradicals, requires the use of electronic structure theories that account for both multi-reference and dynamic correlation effects. A variety of methods exist that aim to resolve the dynamic correlation in multi-reference problems, commonly relying on an exponentially scaling complete-active-space self-consistent-field (CASSCF) calculation to generate reference molecular orbitals (MOs). However, while CASSCF orbitals provide the optimal solution for a selected set of correlated (active) orbitals, their suitability in the quest for the resolution of the total correlation energy has not been thoroughly investigated. Recent research has shown the ability of Kohn-Shan density functional theory to provide improved orbitals for coupled cluster (CC) and Møller-Plesset perturbation theory (MP) calculations. Here, we extend the search for optimal and more cost effective MOs to post-configuration-interaction [post-(CI)] methods, surveying the ability of the MOs obtained with various density functional theory (DFT) functionals, as well as Hartree-Fock and CC and MP calculations to accurately capture the total electronic correlation energy. Applying the anti-Hermitian contracted Schrödinger equation to the dissociation of N2, the calculation of biradical singlet-triplet gaps, and the transition states of bicylobutane isomerization, we demonstrate that DFT provides a cost-effective alternative to CASSCF in providing reference orbitals for post-CI dynamic correlation calculations.\",\"PeriodicalId\":446961,\"journal\":{\"name\":\"The Journal of chemical physics\",\"volume\":\"287 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of chemical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0090342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of chemical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0090342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

强相关体系(如双基)的化学性质的精确分辨,需要使用兼顾多参考和动态相关效应的电子结构理论。目前已有多种方法解决多参考问题中的动态相关性问题,通常依靠指数尺度完全主动空间自洽场(CASSCF)计算来生成参考分子轨道(MOs)。然而,尽管CASSCF轨道为选定的一组相关(活性)轨道提供了最优解,但它们在寻求总相关能分辨率方面的适用性尚未得到充分研究。最近的研究表明,Kohn-Shan密度泛函理论能够为耦合簇(CC)和Møller-Plesset微扰理论(MP)的计算提供改进的轨道。在这里,我们将寻找最优和更具成本效益的MOs扩展到后构型相互作用[后(CI)]方法,测量了用各种密度泛函理论(DFT)泛函获得的MOs的能力,以及Hartree-Fock和CC和MP计算准确捕获总电子相关能的能力。将反厄米缩Schrödinger方程应用于N2的解离、双基单重态-三重态间隙的计算以及双环丁烷异构化的过渡态,我们证明了DFT在为ci后动态相关计算提供参考轨道方面提供了一种比CASSCF更具成本效益的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating the molecular orbital dependence of the total electronic energy in multireference problems.
The accurate resolution of the chemical properties of strongly correlated systems, such as biradicals, requires the use of electronic structure theories that account for both multi-reference and dynamic correlation effects. A variety of methods exist that aim to resolve the dynamic correlation in multi-reference problems, commonly relying on an exponentially scaling complete-active-space self-consistent-field (CASSCF) calculation to generate reference molecular orbitals (MOs). However, while CASSCF orbitals provide the optimal solution for a selected set of correlated (active) orbitals, their suitability in the quest for the resolution of the total correlation energy has not been thoroughly investigated. Recent research has shown the ability of Kohn-Shan density functional theory to provide improved orbitals for coupled cluster (CC) and Møller-Plesset perturbation theory (MP) calculations. Here, we extend the search for optimal and more cost effective MOs to post-configuration-interaction [post-(CI)] methods, surveying the ability of the MOs obtained with various density functional theory (DFT) functionals, as well as Hartree-Fock and CC and MP calculations to accurately capture the total electronic correlation energy. Applying the anti-Hermitian contracted Schrödinger equation to the dissociation of N2, the calculation of biradical singlet-triplet gaps, and the transition states of bicylobutane isomerization, we demonstrate that DFT provides a cost-effective alternative to CASSCF in providing reference orbitals for post-CI dynamic correlation calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信