数据流上的连续相似连接

Jia Cui, Weiping Wang, Dan Meng, Zhenyan Liu
{"title":"数据流上的连续相似连接","authors":"Jia Cui, Weiping Wang, Dan Meng, Zhenyan Liu","doi":"10.1109/PADSW.2014.7097853","DOIUrl":null,"url":null,"abstract":"Similarity join plays an important role in many applications, such as data cleaning and integration, to address the poor data quality problem. Most of the existing studies focused on performing similarity join on static datasets but few studies realized running it on dynamic data streams. With the development of network technology, the data accessing paradigm has transferred from disk-oriented mode to online data streams, which makes performing similarity join in continuous query on data streams become a novel query processing paradigm. Different from static dataset, data stream is unbounded, continuous and unpredictable. The significant differences pose serious challenges, such as real-time query performance. To this end, we study the problem of continuous similarity join on data streams in this paper, which is based on edit distance metric and filter-and-verify framework with sliding-window semantics. Two subcases of this problem are studied, including self similarity join on a single data stream and similarity join on two streams. We introduced the basic window based sliding window model to facilitate the update of sliding window and its index. More details of our method, including signature extraction schemes, filtering and verification algorithms, re-evaluation strategies are discussed respectively. Finally, extensive experimental results show that our method works efficiently on real data streams.","PeriodicalId":421740,"journal":{"name":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous similarity join on data streams\",\"authors\":\"Jia Cui, Weiping Wang, Dan Meng, Zhenyan Liu\",\"doi\":\"10.1109/PADSW.2014.7097853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity join plays an important role in many applications, such as data cleaning and integration, to address the poor data quality problem. Most of the existing studies focused on performing similarity join on static datasets but few studies realized running it on dynamic data streams. With the development of network technology, the data accessing paradigm has transferred from disk-oriented mode to online data streams, which makes performing similarity join in continuous query on data streams become a novel query processing paradigm. Different from static dataset, data stream is unbounded, continuous and unpredictable. The significant differences pose serious challenges, such as real-time query performance. To this end, we study the problem of continuous similarity join on data streams in this paper, which is based on edit distance metric and filter-and-verify framework with sliding-window semantics. Two subcases of this problem are studied, including self similarity join on a single data stream and similarity join on two streams. We introduced the basic window based sliding window model to facilitate the update of sliding window and its index. More details of our method, including signature extraction schemes, filtering and verification algorithms, re-evaluation strategies are discussed respectively. Finally, extensive experimental results show that our method works efficiently on real data streams.\",\"PeriodicalId\":421740,\"journal\":{\"name\":\"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PADSW.2014.7097853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADSW.2014.7097853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

相似连接在许多应用程序中扮演着重要的角色,例如数据清理和集成,以解决数据质量差的问题。现有的研究大多集中在静态数据集上执行相似连接,而很少有研究实现在动态数据流上运行相似连接。随着网络技术的发展,数据访问范式已经从面向磁盘的模式转向在线数据流,这使得对数据流进行连续查询的相似连接成为一种新的查询处理范式。与静态数据集不同,数据流是无界的、连续的、不可预测的。这些显著的差异带来了严重的挑战,比如实时查询性能。为此,本文研究了基于编辑距离度量和带滑动窗口语义的过滤验证框架的数据流连续相似连接问题。研究了该问题的两个子实例,包括单数据流上的自相似连接和两数据流上的相似连接。为了方便滑动窗口及其索引的更新,我们引入了基于基本窗口的滑动窗口模型。详细讨论了签名提取方案、过滤和验证算法、重评估策略等。最后,大量的实验结果表明,我们的方法在实际数据流上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous similarity join on data streams
Similarity join plays an important role in many applications, such as data cleaning and integration, to address the poor data quality problem. Most of the existing studies focused on performing similarity join on static datasets but few studies realized running it on dynamic data streams. With the development of network technology, the data accessing paradigm has transferred from disk-oriented mode to online data streams, which makes performing similarity join in continuous query on data streams become a novel query processing paradigm. Different from static dataset, data stream is unbounded, continuous and unpredictable. The significant differences pose serious challenges, such as real-time query performance. To this end, we study the problem of continuous similarity join on data streams in this paper, which is based on edit distance metric and filter-and-verify framework with sliding-window semantics. Two subcases of this problem are studied, including self similarity join on a single data stream and similarity join on two streams. We introduced the basic window based sliding window model to facilitate the update of sliding window and its index. More details of our method, including signature extraction schemes, filtering and verification algorithms, re-evaluation strategies are discussed respectively. Finally, extensive experimental results show that our method works efficiently on real data streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信