社会过程的预测分析II:可预测性与预警分析

R. Colbaugh, K. Glass
{"title":"社会过程的预测分析II:可预测性与预警分析","authors":"R. Colbaugh, K. Glass","doi":"10.1109/CCA.2009.5280710","DOIUrl":null,"url":null,"abstract":"This two-part paper presents a new approach to predictive analysis for social processes. Part I identifies a class of social processes, called positive externality processes, which are both important and difficult to predict, and introduces a multi-scale, stochastic hybrid system modeling framework for these systems. In Part II of the paper we develop a systems theory-based, computationally tractable approach to predictive analysis for these systems. Among other capabilities, this analytic methodology enables assessment of process predictability, identification of measurables which have predictive power, discovery of reliable early indicators for events of interest, and robust, scalable prediction. The potential of the proposed approach is illustrated through case studies involving online markets, social movements, and protest behavior.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predictive analysis for social processes II: Predictability and warning analysis\",\"authors\":\"R. Colbaugh, K. Glass\",\"doi\":\"10.1109/CCA.2009.5280710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This two-part paper presents a new approach to predictive analysis for social processes. Part I identifies a class of social processes, called positive externality processes, which are both important and difficult to predict, and introduces a multi-scale, stochastic hybrid system modeling framework for these systems. In Part II of the paper we develop a systems theory-based, computationally tractable approach to predictive analysis for these systems. Among other capabilities, this analytic methodology enables assessment of process predictability, identification of measurables which have predictive power, discovery of reliable early indicators for events of interest, and robust, scalable prediction. The potential of the proposed approach is illustrated through case studies involving online markets, social movements, and protest behavior.\",\"PeriodicalId\":294950,\"journal\":{\"name\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2009.5280710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5280710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这两部分的论文提出了一种新的方法来预测分析社会进程。第一部分确定了一类社会过程,称为正外部性过程,它们既重要又难以预测,并为这些系统引入了一个多尺度、随机混合系统建模框架。在论文的第二部分,我们开发了一个基于系统理论的,计算上易于处理的方法来预测分析这些系统。在其他功能中,这种分析方法能够评估过程的可预测性,识别具有预测能力的可测量值,为感兴趣的事件发现可靠的早期指标,以及健壮的、可扩展的预测。通过涉及在线市场、社会运动和抗议行为的案例研究,说明了拟议方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive analysis for social processes II: Predictability and warning analysis
This two-part paper presents a new approach to predictive analysis for social processes. Part I identifies a class of social processes, called positive externality processes, which are both important and difficult to predict, and introduces a multi-scale, stochastic hybrid system modeling framework for these systems. In Part II of the paper we develop a systems theory-based, computationally tractable approach to predictive analysis for these systems. Among other capabilities, this analytic methodology enables assessment of process predictability, identification of measurables which have predictive power, discovery of reliable early indicators for events of interest, and robust, scalable prediction. The potential of the proposed approach is illustrated through case studies involving online markets, social movements, and protest behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信