联合可视化文本和图形数据探索界面

Tim Repke, Ralf Krestel
{"title":"联合可视化文本和图形数据探索界面","authors":"Tim Repke, Ralf Krestel","doi":"10.1145/3379336.3381470","DOIUrl":null,"url":null,"abstract":"Many large text collections exhibit graph structures, either inherent to the content itself or encoded in the metadata of the individual documents. Example graphs extracted from document collections are co-author networks, citation networks, or named-entity-cooccurrence networks. Furthermore, social networks can be extracted from email corpora, tweets, or social media. When it comes to visualising these large corpora, traditionally either the textual content or the network graph are used. We propose to incorporate both, text and graph, to not only visualise the semantic information encoded in the documents' content but also the relationships expressed by the inherent network structure in a two-dimensional landscape. We illustrate the effectiveness of our approach with an exploration interface for different real world datasets.","PeriodicalId":335081,"journal":{"name":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploration Interface for Jointly Visualised Text and Graph Data\",\"authors\":\"Tim Repke, Ralf Krestel\",\"doi\":\"10.1145/3379336.3381470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many large text collections exhibit graph structures, either inherent to the content itself or encoded in the metadata of the individual documents. Example graphs extracted from document collections are co-author networks, citation networks, or named-entity-cooccurrence networks. Furthermore, social networks can be extracted from email corpora, tweets, or social media. When it comes to visualising these large corpora, traditionally either the textual content or the network graph are used. We propose to incorporate both, text and graph, to not only visualise the semantic information encoded in the documents' content but also the relationships expressed by the inherent network structure in a two-dimensional landscape. We illustrate the effectiveness of our approach with an exploration interface for different real world datasets.\",\"PeriodicalId\":335081,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3379336.3381470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379336.3381470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多大型文本集合显示图形结构,这些结构要么是内容本身固有的,要么是编码在单个文档的元数据中。从文档集合中提取的示例图有合著者网络、引用网络或命名实体协同网络。此外,社交网络可以从电子邮件语料库、推文或社交媒体中提取。当涉及到可视化这些大型语料库时,传统上要么使用文本内容,要么使用网络图。我们建议将文本和图形结合起来,不仅可以可视化文档内容中编码的语义信息,还可以可视化二维景观中固有网络结构所表达的关系。我们用一个针对不同真实世界数据集的探索界面来说明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration Interface for Jointly Visualised Text and Graph Data
Many large text collections exhibit graph structures, either inherent to the content itself or encoded in the metadata of the individual documents. Example graphs extracted from document collections are co-author networks, citation networks, or named-entity-cooccurrence networks. Furthermore, social networks can be extracted from email corpora, tweets, or social media. When it comes to visualising these large corpora, traditionally either the textual content or the network graph are used. We propose to incorporate both, text and graph, to not only visualise the semantic information encoded in the documents' content but also the relationships expressed by the inherent network structure in a two-dimensional landscape. We illustrate the effectiveness of our approach with an exploration interface for different real world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信