使用手势的实时物理人机交互框架

Osama Mazhar, S. Ramdani, B. Navarro, R. Passama
{"title":"使用手势的实时物理人机交互框架","authors":"Osama Mazhar, S. Ramdani, B. Navarro, R. Passama","doi":"10.1109/ARSO.2018.8625753","DOIUrl":null,"url":null,"abstract":"A physical Human-Robot Interaction (pHRI) framework is proposed using vision and force sensors for a two-way object hand-over task. Kinect v2 is integrated with the state-of-the-art 2D skeleton extraction library namely Openpose to obtain a 3D skeleton of the human operator. A robust and rotation invariant (in the coronal plane) hand gesture recognition system is developed by exploiting a convolutional neural network. This network is trained such that the gestures can be recognized without the need to pre-process the RGB hand images at run time. This work establishes a firm basis for the robot control using hand-gestures. This will be extended for the development of intelligent human intention detection in pHRI scenarios to efficiently recognize a variety of static as well as dynamic gestures.","PeriodicalId":441318,"journal":{"name":"2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Framework for Real-Time Physical Human-Robot Interaction using Hand Gestures\",\"authors\":\"Osama Mazhar, S. Ramdani, B. Navarro, R. Passama\",\"doi\":\"10.1109/ARSO.2018.8625753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physical Human-Robot Interaction (pHRI) framework is proposed using vision and force sensors for a two-way object hand-over task. Kinect v2 is integrated with the state-of-the-art 2D skeleton extraction library namely Openpose to obtain a 3D skeleton of the human operator. A robust and rotation invariant (in the coronal plane) hand gesture recognition system is developed by exploiting a convolutional neural network. This network is trained such that the gestures can be recognized without the need to pre-process the RGB hand images at run time. This work establishes a firm basis for the robot control using hand-gestures. This will be extended for the development of intelligent human intention detection in pHRI scenarios to efficiently recognize a variety of static as well as dynamic gestures.\",\"PeriodicalId\":441318,\"journal\":{\"name\":\"2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO.2018.8625753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2018.8625753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于视觉和力传感器的人机交互(pHRI)框架。Kinect v2集成了最先进的2D骨骼提取库,即Openpose,以获得人类操作员的3D骨骼。利用卷积神经网络,开发了一种鲁棒的旋转不变性(冠状面)手势识别系统。该网络经过训练,可以在不需要在运行时预处理RGB手部图像的情况下识别手势。这项工作为机器人手势控制奠定了坚实的基础。这将扩展到pHRI场景中智能人类意图检测的开发,以有效识别各种静态和动态手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Real-Time Physical Human-Robot Interaction using Hand Gestures
A physical Human-Robot Interaction (pHRI) framework is proposed using vision and force sensors for a two-way object hand-over task. Kinect v2 is integrated with the state-of-the-art 2D skeleton extraction library namely Openpose to obtain a 3D skeleton of the human operator. A robust and rotation invariant (in the coronal plane) hand gesture recognition system is developed by exploiting a convolutional neural network. This network is trained such that the gestures can be recognized without the need to pre-process the RGB hand images at run time. This work establishes a firm basis for the robot control using hand-gestures. This will be extended for the development of intelligent human intention detection in pHRI scenarios to efficiently recognize a variety of static as well as dynamic gestures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信