特征选择算法稳定性的新测度

J. Novovicová, P. Somol, P. Pudil
{"title":"特征选择算法稳定性的新测度","authors":"J. Novovicová, P. Somol, P. Pudil","doi":"10.1109/ICDMW.2009.32","DOIUrl":null,"url":null,"abstract":"Stability or robustness of feature selection methods is a topic of recent interest. A new stability measure based on the Shannon entropy is proposed in this paper to evaluate the overall occurrence of individual features in selected subsets of possibly varying cardinality. We compare the new measure to stability measures proposed recently by Somol et al. The new measure is computationally very efficient and adds another type of insight into the stability problem. All considered measures have been used to compare the stability of several feature selection methods (individually best ranking, sequential forward selection, sequential forward floating selection and dynamic oscillating search) on a set of examples.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A New Measure of Feature Selection Algorithms' Stability\",\"authors\":\"J. Novovicová, P. Somol, P. Pudil\",\"doi\":\"10.1109/ICDMW.2009.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability or robustness of feature selection methods is a topic of recent interest. A new stability measure based on the Shannon entropy is proposed in this paper to evaluate the overall occurrence of individual features in selected subsets of possibly varying cardinality. We compare the new measure to stability measures proposed recently by Somol et al. The new measure is computationally very efficient and adds another type of insight into the stability problem. All considered measures have been used to compare the stability of several feature selection methods (individually best ranking, sequential forward selection, sequential forward floating selection and dynamic oscillating search) on a set of examples.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

特征选择方法的稳定性或鲁棒性是最近人们感兴趣的一个话题。本文提出了一种新的基于香农熵的稳定性度量,用于评估在可能变化基数的选定子集中单个特征的总体出现情况。我们将新措施与Somol等人最近提出的稳定性措施进行了比较。新的测量方法在计算上非常高效,并且为稳定性问题增加了另一种类型的洞察力。所有考虑的度量都被用来比较几种特征选择方法(单独最佳排序、顺序前向选择、顺序前向浮动选择和动态振荡搜索)在一组示例上的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Measure of Feature Selection Algorithms' Stability
Stability or robustness of feature selection methods is a topic of recent interest. A new stability measure based on the Shannon entropy is proposed in this paper to evaluate the overall occurrence of individual features in selected subsets of possibly varying cardinality. We compare the new measure to stability measures proposed recently by Somol et al. The new measure is computationally very efficient and adds another type of insight into the stability problem. All considered measures have been used to compare the stability of several feature selection methods (individually best ranking, sequential forward selection, sequential forward floating selection and dynamic oscillating search) on a set of examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信