基于MediaPipe和机器学习算法的手语数字检测

Safyzan Salim, M. M. A. Jamil, R. Ambar, R. Roslan, M. G. Kamardan
{"title":"基于MediaPipe和机器学习算法的手语数字检测","authors":"Safyzan Salim, M. M. A. Jamil, R. Ambar, R. Roslan, M. G. Kamardan","doi":"10.1109/ICCSCE54767.2022.9935659","DOIUrl":null,"url":null,"abstract":"A major challenge when developing Machine Learning (ML) sign language recognition using wearable is how to efficiently translate the gestures based on the acquired sensors data. Conventional method utilizes data fusion based on the obtained sensors' information by producing mapping/lookup table for creating classification model of gestures corresponding sensor value. Although this method is effective, it increases programming complexity. Therefore, emerging technology that can improve the simplicity and provide accuracy of gestures' data processing is needed. This work experiments the artificial intelligence approach of the development of American Sign Language (ASL) detection using MediaPipe, a ready-to-use cross-platform machine learning framework for computer vision works and Google Teachable Machine a free web tool of machine learning model creation.","PeriodicalId":346014,"journal":{"name":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sign Language Digit Detection with MediaPipe and Machine Learning Algorithm\",\"authors\":\"Safyzan Salim, M. M. A. Jamil, R. Ambar, R. Roslan, M. G. Kamardan\",\"doi\":\"10.1109/ICCSCE54767.2022.9935659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major challenge when developing Machine Learning (ML) sign language recognition using wearable is how to efficiently translate the gestures based on the acquired sensors data. Conventional method utilizes data fusion based on the obtained sensors' information by producing mapping/lookup table for creating classification model of gestures corresponding sensor value. Although this method is effective, it increases programming complexity. Therefore, emerging technology that can improve the simplicity and provide accuracy of gestures' data processing is needed. This work experiments the artificial intelligence approach of the development of American Sign Language (ASL) detection using MediaPipe, a ready-to-use cross-platform machine learning framework for computer vision works and Google Teachable Machine a free web tool of machine learning model creation.\",\"PeriodicalId\":346014,\"journal\":{\"name\":\"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE54767.2022.9935659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE54767.2022.9935659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在使用可穿戴设备开发机器学习(ML)手语识别时,一个主要挑战是如何根据获取的传感器数据有效地翻译手势。传统的方法是在获取传感器信息的基础上进行数据融合,通过生成映射/查找表来建立相应传感器值的手势分类模型。虽然这种方法是有效的,但它增加了编程的复杂性。因此,需要新兴技术来提高手势数据处理的简洁性和准确性。这项工作使用MediaPipe(一个现成的跨平台机器学习框架,用于计算机视觉作品)和Google teeable machine(一个免费的机器学习模型创建网络工具)来实验开发美国手语(ASL)检测的人工智能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sign Language Digit Detection with MediaPipe and Machine Learning Algorithm
A major challenge when developing Machine Learning (ML) sign language recognition using wearable is how to efficiently translate the gestures based on the acquired sensors data. Conventional method utilizes data fusion based on the obtained sensors' information by producing mapping/lookup table for creating classification model of gestures corresponding sensor value. Although this method is effective, it increases programming complexity. Therefore, emerging technology that can improve the simplicity and provide accuracy of gestures' data processing is needed. This work experiments the artificial intelligence approach of the development of American Sign Language (ASL) detection using MediaPipe, a ready-to-use cross-platform machine learning framework for computer vision works and Google Teachable Machine a free web tool of machine learning model creation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信