具有长反例的测试环境中的状态机推理

M. Irfan
{"title":"具有长反例的测试环境中的状态机推理","authors":"M. Irfan","doi":"10.1109/ICST.2010.68","DOIUrl":null,"url":null,"abstract":"We are working on the techniques which iteratively learn the formal models from black box implementations by testing. The novelty of the approach addressed here is our processing of the long counterexamples. There is a possibility that the counterexamples generated by a counterexample generator include needless sub sequences. We address the techniques which are developed to avoid the impact of such unwanted sequences on the learning process. The gain of the proposed algorithm is confirmed by considering a comprehensive set of experiments on the finite sate machines.","PeriodicalId":192678,"journal":{"name":"2010 Third International Conference on Software Testing, Verification and Validation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"State Machine Inference in Testing Context with Long Counterexamples\",\"authors\":\"M. Irfan\",\"doi\":\"10.1109/ICST.2010.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are working on the techniques which iteratively learn the formal models from black box implementations by testing. The novelty of the approach addressed here is our processing of the long counterexamples. There is a possibility that the counterexamples generated by a counterexample generator include needless sub sequences. We address the techniques which are developed to avoid the impact of such unwanted sequences on the learning process. The gain of the proposed algorithm is confirmed by considering a comprehensive set of experiments on the finite sate machines.\",\"PeriodicalId\":192678,\"journal\":{\"name\":\"2010 Third International Conference on Software Testing, Verification and Validation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Conference on Software Testing, Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST.2010.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Conference on Software Testing, Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2010.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们正在研究通过测试从黑盒实现中迭代学习正式模型的技术。这里讨论的方法的新颖之处在于我们对长反例的处理。反例生成器生成的反例可能包含不必要的子序列。我们讨论了为避免这些不需要的序列对学习过程的影响而开发的技术。通过在有限安全机上进行的一系列综合实验,验证了该算法的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Machine Inference in Testing Context with Long Counterexamples
We are working on the techniques which iteratively learn the formal models from black box implementations by testing. The novelty of the approach addressed here is our processing of the long counterexamples. There is a possibility that the counterexamples generated by a counterexample generator include needless sub sequences. We address the techniques which are developed to avoid the impact of such unwanted sequences on the learning process. The gain of the proposed algorithm is confirmed by considering a comprehensive set of experiments on the finite sate machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信