{"title":"广义分数阶导数脉冲型积分微分方程的动力学和稳定性结果","authors":"D. Vivek, E. Elsayed, K. Kanagarajan","doi":"10.22436/MNS.04.01.01","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence, uniqueness, and Ulam stability of solutions for impulsive type integro-differential equations with generalized fractional derivative. The arguments are based upon the Banach contraction principle and Schaefer’s fixed point theorem.","PeriodicalId":443718,"journal":{"name":"Mathematics in Natural Science","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative\",\"authors\":\"D. Vivek, E. Elsayed, K. Kanagarajan\",\"doi\":\"10.22436/MNS.04.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the existence, uniqueness, and Ulam stability of solutions for impulsive type integro-differential equations with generalized fractional derivative. The arguments are based upon the Banach contraction principle and Schaefer’s fixed point theorem.\",\"PeriodicalId\":443718,\"journal\":{\"name\":\"Mathematics in Natural Science\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/MNS.04.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/MNS.04.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative
In this paper, we investigate the existence, uniqueness, and Ulam stability of solutions for impulsive type integro-differential equations with generalized fractional derivative. The arguments are based upon the Banach contraction principle and Schaefer’s fixed point theorem.