车牌识别中特征提取器的比较

S. Abdullah, M. Khalid, R. Yusof, K. Omar
{"title":"车牌识别中特征提取器的比较","authors":"S. Abdullah, M. Khalid, R. Yusof, K. Omar","doi":"10.1109/AMS.2007.25","DOIUrl":null,"url":null,"abstract":"Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. In this paper, an automatic license plate recognition system is proposed for Malaysian vehicles with standard license plates using blob labeling and clustering for segmentation, seven popular and one proposed edge detectors for feature extraction and neural networks for classification. There were eight experiments conducted using eight different edge detectors: Kirsch, Sobel, Laplacian, Wallis, Prewitt, Frei Chen and a proposed edge detector. The result had shown kirsch edge detectors is the best technique for feature exractor while the proposed achieved better results compared to Prewitt, Frei Chen and Wallis","PeriodicalId":198751,"journal":{"name":"First Asia International Conference on Modelling & Simulation (AMS'07)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Comparison of Feature Extractors in License Plate Recognition\",\"authors\":\"S. Abdullah, M. Khalid, R. Yusof, K. Omar\",\"doi\":\"10.1109/AMS.2007.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. In this paper, an automatic license plate recognition system is proposed for Malaysian vehicles with standard license plates using blob labeling and clustering for segmentation, seven popular and one proposed edge detectors for feature extraction and neural networks for classification. There were eight experiments conducted using eight different edge detectors: Kirsch, Sobel, Laplacian, Wallis, Prewitt, Frei Chen and a proposed edge detector. The result had shown kirsch edge detectors is the best technique for feature exractor while the proposed achieved better results compared to Prewitt, Frei Chen and Wallis\",\"PeriodicalId\":198751,\"journal\":{\"name\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2007.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Asia International Conference on Modelling & Simulation (AMS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2007.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

车牌识别在许多国家都得到了深入的研究。由于使用的车牌类型不同,每个国家对自动车牌识别系统的要求也不同。本文提出了一种针对马来西亚标准车牌车辆的自动车牌识别系统,该系统使用blob标记和聚类进行分割,使用七个流行的和一个建议的边缘检测器进行特征提取,并使用神经网络进行分类。有八个实验使用八种不同的边缘检测器:Kirsch, Sobel, Laplacian, Wallis, Prewitt, Frei Chen和一个提议的边缘检测器。结果表明kirsch边缘检测器是最好的特征提取技术,并且与Prewitt, Frei Chen和Wallis相比,所提出的方法取得了更好的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Feature Extractors in License Plate Recognition
Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. In this paper, an automatic license plate recognition system is proposed for Malaysian vehicles with standard license plates using blob labeling and clustering for segmentation, seven popular and one proposed edge detectors for feature extraction and neural networks for classification. There were eight experiments conducted using eight different edge detectors: Kirsch, Sobel, Laplacian, Wallis, Prewitt, Frei Chen and a proposed edge detector. The result had shown kirsch edge detectors is the best technique for feature exractor while the proposed achieved better results compared to Prewitt, Frei Chen and Wallis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信