Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, Sungjin Lee
{"title":"基于lsm树的有界尾键值ssd的设计","authors":"Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, Sungjin Lee","doi":"10.1145/3452846","DOIUrl":null,"url":null,"abstract":"Key-value store based on a log-structured merge-tree (LSM-tree) is preferable to hash-based key-value store, because an LSM-tree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD), and, consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42%, and shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree. We also find that PinK is able to provide a flexible design space for a wide range of KV workloads by leveraging the read-write tradeoff in LSM-trees.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design of LSM-tree-based Key-value SSDs with Bounded Tails\",\"authors\":\"Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, Sungjin Lee\",\"doi\":\"10.1145/3452846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key-value store based on a log-structured merge-tree (LSM-tree) is preferable to hash-based key-value store, because an LSM-tree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD), and, consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42%, and shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree. We also find that PinK is able to provide a flexible design space for a wide range of KV workloads by leveraging the read-write tradeoff in LSM-trees.\",\"PeriodicalId\":273014,\"journal\":{\"name\":\"ACM Transactions on Storage (TOS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage (TOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of LSM-tree-based Key-value SSDs with Bounded Tails
Key-value store based on a log-structured merge-tree (LSM-tree) is preferable to hash-based key-value store, because an LSM-tree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD), and, consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42%, and shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree. We also find that PinK is able to provide a flexible design space for a wide range of KV workloads by leveraging the read-write tradeoff in LSM-trees.