无限阶双曲型最优控制问题的灵敏度分析

A. Kowalewski, A. Krakowiak, Z. Emirsajlow, J. Sokołowski
{"title":"无限阶双曲型最优控制问题的灵敏度分析","authors":"A. Kowalewski, A. Krakowiak, Z. Emirsajlow, J. Sokołowski","doi":"10.1109/MMAR.2010.5587250","DOIUrl":null,"url":null,"abstract":"In the paper the first order sensitivity analysis is performed for a class of optimal control problems for infinite order hyperbolic equations. A singular perturbation of geometrical domain of integration is introduced in the form of a circular hole. The Steklov-Poincare´ operator on a circle is defined in order to reduce the problem to regular perturbations in the truncated domain. The optimality system is differentiated with respect to the small parameter and the directional derivative of the optimal control is obtained as a solution to an auxiliary optimal control problem.","PeriodicalId":336219,"journal":{"name":"2010 15th International Conference on Methods and Models in Automation and Robotics","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensitivity analysis of infinite order hyperbolic optimal control problems\",\"authors\":\"A. Kowalewski, A. Krakowiak, Z. Emirsajlow, J. Sokołowski\",\"doi\":\"10.1109/MMAR.2010.5587250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper the first order sensitivity analysis is performed for a class of optimal control problems for infinite order hyperbolic equations. A singular perturbation of geometrical domain of integration is introduced in the form of a circular hole. The Steklov-Poincare´ operator on a circle is defined in order to reduce the problem to regular perturbations in the truncated domain. The optimality system is differentiated with respect to the small parameter and the directional derivative of the optimal control is obtained as a solution to an auxiliary optimal control problem.\",\"PeriodicalId\":336219,\"journal\":{\"name\":\"2010 15th International Conference on Methods and Models in Automation and Robotics\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th International Conference on Methods and Models in Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2010.5587250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th International Conference on Methods and Models in Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2010.5587250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对一类无限阶双曲型方程的最优控制问题进行了一阶灵敏度分析。以圆孔的形式引入几何积分域的奇异摄动。定义了圆上的Steklov-Poincare算子,将问题简化为截断域中的正则扰动。将最优性系统对小参数微分,得到最优控制的方向导数,作为辅助最优控制问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity analysis of infinite order hyperbolic optimal control problems
In the paper the first order sensitivity analysis is performed for a class of optimal control problems for infinite order hyperbolic equations. A singular perturbation of geometrical domain of integration is introduced in the form of a circular hole. The Steklov-Poincare´ operator on a circle is defined in order to reduce the problem to regular perturbations in the truncated domain. The optimality system is differentiated with respect to the small parameter and the directional derivative of the optimal control is obtained as a solution to an auxiliary optimal control problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信