基于历史控制分布估计总体生存的自举模拟

A. Nieto, Javier Gómez
{"title":"基于历史控制分布估计总体生存的自举模拟","authors":"A. Nieto, Javier Gómez","doi":"10.1179/1757092112Z.0000000005","DOIUrl":null,"url":null,"abstract":"Following the calculation of the median overall survival (OS) in a clinical trial, it is often desirable to put the estimates into perspective by comparing them with the results of other studies reported in the current bibliography. The main limitation of this comparison is the different distribution of prognostic baseline characteristics between studies. A SAS® program to obtain a bootstrap estimation for the median OS, balancing it by the historical distribution, is described herein.","PeriodicalId":253012,"journal":{"name":"Pharmaceutical Programming","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrap simulations to estimate overall survival based on the distribution of a historical control\",\"authors\":\"A. Nieto, Javier Gómez\",\"doi\":\"10.1179/1757092112Z.0000000005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following the calculation of the median overall survival (OS) in a clinical trial, it is often desirable to put the estimates into perspective by comparing them with the results of other studies reported in the current bibliography. The main limitation of this comparison is the different distribution of prognostic baseline characteristics between studies. A SAS® program to obtain a bootstrap estimation for the median OS, balancing it by the historical distribution, is described herein.\",\"PeriodicalId\":253012,\"journal\":{\"name\":\"Pharmaceutical Programming\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/1757092112Z.0000000005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/1757092112Z.0000000005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在临床试验中计算中位总生存期(OS)后,通常需要将其与当前参考文献中报道的其他研究结果进行比较,以正确看待估计结果。这种比较的主要局限性是研究之间预后基线特征的不同分布。本文描述了一个SAS®程序,用于获得中位数OS的自举估计,通过历史分布来平衡它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap simulations to estimate overall survival based on the distribution of a historical control
Following the calculation of the median overall survival (OS) in a clinical trial, it is often desirable to put the estimates into perspective by comparing them with the results of other studies reported in the current bibliography. The main limitation of this comparison is the different distribution of prognostic baseline characteristics between studies. A SAS® program to obtain a bootstrap estimation for the median OS, balancing it by the historical distribution, is described herein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信