手写文本识别真的需要多维循环层吗?

J. Puigcerver
{"title":"手写文本识别真的需要多维循环层吗?","authors":"J. Puigcerver","doi":"10.1109/ICDAR.2017.20","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art approaches to offline Handwritten Text Recognition extensively rely on Multidimensional Long Short-Term Memory networks. However, these architectures come with quite an expensive computational cost, and we observe that they extract features visually similar to those of convolutional layers, which are computationally cheaper. This suggests that the two-dimensional long-term dependencies, which are potentially modeled by multidimensional recurrent layers, may not be essential to achieve a good recognition accuracy, at least in the lower layers of the architecture. In this work, an alternative model is explored that relies only on convolutional and one-dimensional recurrent layers that achieves better or equivalent results than those of the current state-of-the-art architecture, and runs significantly faster. In addition, we observe that using random distortions during training as synthetic data augmentation dramatically improves the accuracy of our model. Thus, are multidimensional recurrent layers really necessary for Handwritten Text Recognition? Probably not.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"205","resultStr":"{\"title\":\"Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition?\",\"authors\":\"J. Puigcerver\",\"doi\":\"10.1109/ICDAR.2017.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current state-of-the-art approaches to offline Handwritten Text Recognition extensively rely on Multidimensional Long Short-Term Memory networks. However, these architectures come with quite an expensive computational cost, and we observe that they extract features visually similar to those of convolutional layers, which are computationally cheaper. This suggests that the two-dimensional long-term dependencies, which are potentially modeled by multidimensional recurrent layers, may not be essential to achieve a good recognition accuracy, at least in the lower layers of the architecture. In this work, an alternative model is explored that relies only on convolutional and one-dimensional recurrent layers that achieves better or equivalent results than those of the current state-of-the-art architecture, and runs significantly faster. In addition, we observe that using random distortions during training as synthetic data augmentation dramatically improves the accuracy of our model. Thus, are multidimensional recurrent layers really necessary for Handwritten Text Recognition? Probably not.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"205\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 205

摘要

当前最先进的离线手写文本识别方法广泛依赖于多维长短期记忆网络。然而,这些架构带来了相当昂贵的计算成本,我们观察到它们提取的特征在视觉上与卷积层相似,而卷积层的计算成本更低。这表明,二维长期依赖关系(可能由多维循环层建模)可能不是实现良好识别精度所必需的,至少在体系结构的较低层中是这样。在这项工作中,研究人员探索了一种替代模型,该模型仅依赖于卷积和一维循环层,可以获得比当前最先进架构更好或等效的结果,并且运行速度快得多。此外,我们观察到在训练过程中使用随机扭曲作为合成数据增强显著提高了我们模型的准确性。因此,多维循环层对于手写文本识别真的是必要的吗?可能不会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition?
Current state-of-the-art approaches to offline Handwritten Text Recognition extensively rely on Multidimensional Long Short-Term Memory networks. However, these architectures come with quite an expensive computational cost, and we observe that they extract features visually similar to those of convolutional layers, which are computationally cheaper. This suggests that the two-dimensional long-term dependencies, which are potentially modeled by multidimensional recurrent layers, may not be essential to achieve a good recognition accuracy, at least in the lower layers of the architecture. In this work, an alternative model is explored that relies only on convolutional and one-dimensional recurrent layers that achieves better or equivalent results than those of the current state-of-the-art architecture, and runs significantly faster. In addition, we observe that using random distortions during training as synthetic data augmentation dramatically improves the accuracy of our model. Thus, are multidimensional recurrent layers really necessary for Handwritten Text Recognition? Probably not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信