一种新的快速高分辨率音乐算法

M. Bouri
{"title":"一种新的快速高分辨率音乐算法","authors":"M. Bouri","doi":"10.1109/SiPS.2012.37","DOIUrl":null,"url":null,"abstract":"The paper describes new techniques to determine the number of sources for a signal based on LU and QR decomposition. We propose novel methods to calculate the threshold for noise subspace estimation used in high resolution array processing methods without eigenvalue decomposition. The paper states that previous techniques primarily use eigenvectors and eigenvalues. We propose an approximation of MUSIC algorithm. This approximation decreases the computational complexity. A full mathematical evaluation of the technique is provided and simulations show that the approach is effective.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Fast High Resolution Music Algorithm\",\"authors\":\"M. Bouri\",\"doi\":\"10.1109/SiPS.2012.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes new techniques to determine the number of sources for a signal based on LU and QR decomposition. We propose novel methods to calculate the threshold for noise subspace estimation used in high resolution array processing methods without eigenvalue decomposition. The paper states that previous techniques primarily use eigenvectors and eigenvalues. We propose an approximation of MUSIC algorithm. This approximation decreases the computational complexity. A full mathematical evaluation of the technique is provided and simulations show that the approach is effective.\",\"PeriodicalId\":286060,\"journal\":{\"name\":\"2012 IEEE Workshop on Signal Processing Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Workshop on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2012.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种基于LU和QR分解的确定信号源数的新技术。我们提出了一种新的方法来计算高分辨率阵列处理方法中不需要特征值分解的噪声子空间估计阈值。本文指出,以前的技术主要使用特征向量和特征值。我们提出了一种近似MUSIC算法。这种近似降低了计算复杂度。对该方法进行了全面的数学评价,仿真结果表明该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Fast High Resolution Music Algorithm
The paper describes new techniques to determine the number of sources for a signal based on LU and QR decomposition. We propose novel methods to calculate the threshold for noise subspace estimation used in high resolution array processing methods without eigenvalue decomposition. The paper states that previous techniques primarily use eigenvectors and eigenvalues. We propose an approximation of MUSIC algorithm. This approximation decreases the computational complexity. A full mathematical evaluation of the technique is provided and simulations show that the approach is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信