L. Melo, R. Benavides, G. Martínez, D. Morales-Acosta, L. Da Silva, M. Paula
{"title":"放大反应对实验室合成聚苯乙烯-共丙烯酸聚电解质的影响","authors":"L. Melo, R. Benavides, G. Martínez, D. Morales-Acosta, L. Da Silva, M. Paula","doi":"10.1109/CSMH.2016.7947660","DOIUrl":null,"url":null,"abstract":"Sulfonated styrene-acrylic acid copolymers have been used as an alternative polyelectrolyte membrane for applications in fuel cells. In this work, the raw copolymer has been prepared by a well studied solution copolymerization reaction method, but at two different capacity reactor conditions: 100 mL and 3 L. The main idea was to scale up the copolymer production for having enough material for future sulfonation reactions. The reaction conditions consisted of styrene/acrylic acid in a 94/6 % mol, BPO as radical initiator in a 0.045 % mol, divinyl benzene (DVB) as crosslinking agent at 0.25 %mol and the solvent diethyl benzene (DEB) in a 50/50 volume ratio with monomers. Temperature was kept at 90 °C and the system stirred at 200 rpm during 2 hours, for both reactors. Molecular weight of copolymers was obtained by means of GPC, glass transition (Tg) by DSC and decomposition temperature (Td) through TGA analysis.","PeriodicalId":340003,"journal":{"name":"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the scaling-up the reactions synthesis of the poly(styrene-co-acrylic acid) polyelectrolyte at laboratory level\",\"authors\":\"L. Melo, R. Benavides, G. Martínez, D. Morales-Acosta, L. Da Silva, M. Paula\",\"doi\":\"10.1109/CSMH.2016.7947660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulfonated styrene-acrylic acid copolymers have been used as an alternative polyelectrolyte membrane for applications in fuel cells. In this work, the raw copolymer has been prepared by a well studied solution copolymerization reaction method, but at two different capacity reactor conditions: 100 mL and 3 L. The main idea was to scale up the copolymer production for having enough material for future sulfonation reactions. The reaction conditions consisted of styrene/acrylic acid in a 94/6 % mol, BPO as radical initiator in a 0.045 % mol, divinyl benzene (DVB) as crosslinking agent at 0.25 %mol and the solvent diethyl benzene (DEB) in a 50/50 volume ratio with monomers. Temperature was kept at 90 °C and the system stirred at 200 rpm during 2 hours, for both reactors. Molecular weight of copolymers was obtained by means of GPC, glass transition (Tg) by DSC and decomposition temperature (Td) through TGA analysis.\",\"PeriodicalId\":340003,\"journal\":{\"name\":\"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSMH.2016.7947660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMH.2016.7947660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of the scaling-up the reactions synthesis of the poly(styrene-co-acrylic acid) polyelectrolyte at laboratory level
Sulfonated styrene-acrylic acid copolymers have been used as an alternative polyelectrolyte membrane for applications in fuel cells. In this work, the raw copolymer has been prepared by a well studied solution copolymerization reaction method, but at two different capacity reactor conditions: 100 mL and 3 L. The main idea was to scale up the copolymer production for having enough material for future sulfonation reactions. The reaction conditions consisted of styrene/acrylic acid in a 94/6 % mol, BPO as radical initiator in a 0.045 % mol, divinyl benzene (DVB) as crosslinking agent at 0.25 %mol and the solvent diethyl benzene (DEB) in a 50/50 volume ratio with monomers. Temperature was kept at 90 °C and the system stirred at 200 rpm during 2 hours, for both reactors. Molecular weight of copolymers was obtained by means of GPC, glass transition (Tg) by DSC and decomposition temperature (Td) through TGA analysis.