{"title":"演示:在商品腕戴式可穿戴设备中使用PPG实现持续用户认证","authors":"Tianming Zhao, Yan Wang, Jian Liu, Yingying Chen","doi":"10.1145/3300061.3343375","DOIUrl":null,"url":null,"abstract":"We present a photoplethysmography (PPG)-based continuous user authentication (CA) system leveraging the pervasively equipped PPG sensor in commodity wrist-worn wearables such as the smartwatch. Compared to existing approaches, our system does not require any users' interactions (e.g., performing specific gestures) and is applicable to practical scenarios where the user's daily activities cause motion artifacts (MA). Notably, we design a robust MA removal method to mitigate the impact of MA. Furthermore, we explore the uniqueness of the human cardiac system and extract the fiducial features in the PPG measurements to train the gradient boosting tree (GBT) classifier, which can effectively differentiate users continuously using low training effort. In particular, we build the prototype of our system using a commodity smartwatch and a WebSocket server running on a laptop for CA. In order to demonstrate the practical use of our system, we will demo our prototype under different scenarios (i.e., static and moving) to show it can effectively detect MA caused by daily activities and achieve a high authentication success rate.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Demo: Toward Continuous User Authentication Using PPG in Commodity Wrist-worn Wearables\",\"authors\":\"Tianming Zhao, Yan Wang, Jian Liu, Yingying Chen\",\"doi\":\"10.1145/3300061.3343375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a photoplethysmography (PPG)-based continuous user authentication (CA) system leveraging the pervasively equipped PPG sensor in commodity wrist-worn wearables such as the smartwatch. Compared to existing approaches, our system does not require any users' interactions (e.g., performing specific gestures) and is applicable to practical scenarios where the user's daily activities cause motion artifacts (MA). Notably, we design a robust MA removal method to mitigate the impact of MA. Furthermore, we explore the uniqueness of the human cardiac system and extract the fiducial features in the PPG measurements to train the gradient boosting tree (GBT) classifier, which can effectively differentiate users continuously using low training effort. In particular, we build the prototype of our system using a commodity smartwatch and a WebSocket server running on a laptop for CA. In order to demonstrate the practical use of our system, we will demo our prototype under different scenarios (i.e., static and moving) to show it can effectively detect MA caused by daily activities and achieve a high authentication success rate.\",\"PeriodicalId\":223523,\"journal\":{\"name\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3300061.3343375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3343375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demo: Toward Continuous User Authentication Using PPG in Commodity Wrist-worn Wearables
We present a photoplethysmography (PPG)-based continuous user authentication (CA) system leveraging the pervasively equipped PPG sensor in commodity wrist-worn wearables such as the smartwatch. Compared to existing approaches, our system does not require any users' interactions (e.g., performing specific gestures) and is applicable to practical scenarios where the user's daily activities cause motion artifacts (MA). Notably, we design a robust MA removal method to mitigate the impact of MA. Furthermore, we explore the uniqueness of the human cardiac system and extract the fiducial features in the PPG measurements to train the gradient boosting tree (GBT) classifier, which can effectively differentiate users continuously using low training effort. In particular, we build the prototype of our system using a commodity smartwatch and a WebSocket server running on a laptop for CA. In order to demonstrate the practical use of our system, we will demo our prototype under different scenarios (i.e., static and moving) to show it can effectively detect MA caused by daily activities and achieve a high authentication success rate.