高光谱特征选择和分类的最大相关性和类可分离性

S. Jahanshahi
{"title":"高光谱特征选择和分类的最大相关性和类可分离性","authors":"S. Jahanshahi","doi":"10.1109/ICAICT.2016.7991685","DOIUrl":null,"url":null,"abstract":"Regarding a growing interest into exploiting hyperspectral images in the plethora of applications such as chemical material identification, agricultural crop mapping, military target detection and etc., myriad approaches have been introducing to interpret and analyze such data. In this paper, I am going to propose a novel method using the combination of two conventional method. Firstly, I use an evolutionary algorithm i.e., multi-objective particle swarm optimization (MOPSO) to select a predefined number of features (spectral bands) and then a well-known classifier i.e., support vector machines (SVMs) is deployed for classification.","PeriodicalId":446472,"journal":{"name":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximum relevance and class separability for hyperspectral feature selection and classification\",\"authors\":\"S. Jahanshahi\",\"doi\":\"10.1109/ICAICT.2016.7991685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regarding a growing interest into exploiting hyperspectral images in the plethora of applications such as chemical material identification, agricultural crop mapping, military target detection and etc., myriad approaches have been introducing to interpret and analyze such data. In this paper, I am going to propose a novel method using the combination of two conventional method. Firstly, I use an evolutionary algorithm i.e., multi-objective particle swarm optimization (MOPSO) to select a predefined number of features (spectral bands) and then a well-known classifier i.e., support vector machines (SVMs) is deployed for classification.\",\"PeriodicalId\":446472,\"journal\":{\"name\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICT.2016.7991685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2016.7991685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于人们对利用高光谱图像在化学材料识别、农作物测绘、军事目标探测等众多应用中的兴趣日益浓厚,已经引入了无数方法来解释和分析这些数据。在本文中,我将提出一种将两种传统方法相结合的新方法。首先,我使用一种进化算法,即多目标粒子群优化(MOPSO)来选择预定义数量的特征(光谱带),然后使用一种众所周知的分类器,即支持向量机(svm)进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum relevance and class separability for hyperspectral feature selection and classification
Regarding a growing interest into exploiting hyperspectral images in the plethora of applications such as chemical material identification, agricultural crop mapping, military target detection and etc., myriad approaches have been introducing to interpret and analyze such data. In this paper, I am going to propose a novel method using the combination of two conventional method. Firstly, I use an evolutionary algorithm i.e., multi-objective particle swarm optimization (MOPSO) to select a predefined number of features (spectral bands) and then a well-known classifier i.e., support vector machines (SVMs) is deployed for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信