{"title":"基于图像识别的海岸安全空中监视到鲨鱼检测","authors":"Teiki Claveau, Chin-E. Lin","doi":"10.6125/17-0804-940","DOIUrl":null,"url":null,"abstract":"Shark detection in uncontrolled environment is a challenging problem that has not been paid much attention deeply. How to accomplish fast and effective coast surveillance impacts safety concerns in beach activities. This paper proposes a submerged shark detection, such as the white shark, using image identification from low altitude drones. The image identification is set on a drone to train real datasets of a 2.5 m long and 0.945 m^2 shark model. The Haar feature-based cascade classifier is used to detect regions of interest (ROI) to extract some features to classify water area with a shark. The proposed system is tested in two different uncontrolled areas in Kenting coast, Taiwan by presenting contrasted conditions. The adopt technique reaches an average of 19 frames/second based on different altitudes of drone experiments from 8 to 22 m above sea level in static and dynamic detections for 30 minutes endurance. The system achieves a true detection’s average of 99.5% by correct classification and the mean score on total false positive detection is 3.85%. The detection rate varies with the altitude and the weather conditions which is sensitive in building an altitude-based image detection system. The experiments show very effective results to detect sharks on sea coast to reach a lower false positive detection rate.","PeriodicalId":335344,"journal":{"name":"Journal of aeronautics, astronautics and aviation, Series A","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aerial Surveillance for Coast Safety to Shark Detection using Image Identification\",\"authors\":\"Teiki Claveau, Chin-E. Lin\",\"doi\":\"10.6125/17-0804-940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shark detection in uncontrolled environment is a challenging problem that has not been paid much attention deeply. How to accomplish fast and effective coast surveillance impacts safety concerns in beach activities. This paper proposes a submerged shark detection, such as the white shark, using image identification from low altitude drones. The image identification is set on a drone to train real datasets of a 2.5 m long and 0.945 m^2 shark model. The Haar feature-based cascade classifier is used to detect regions of interest (ROI) to extract some features to classify water area with a shark. The proposed system is tested in two different uncontrolled areas in Kenting coast, Taiwan by presenting contrasted conditions. The adopt technique reaches an average of 19 frames/second based on different altitudes of drone experiments from 8 to 22 m above sea level in static and dynamic detections for 30 minutes endurance. The system achieves a true detection’s average of 99.5% by correct classification and the mean score on total false positive detection is 3.85%. The detection rate varies with the altitude and the weather conditions which is sensitive in building an altitude-based image detection system. The experiments show very effective results to detect sharks on sea coast to reach a lower false positive detection rate.\",\"PeriodicalId\":335344,\"journal\":{\"name\":\"Journal of aeronautics, astronautics and aviation, Series A\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of aeronautics, astronautics and aviation, Series A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6125/17-0804-940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of aeronautics, astronautics and aviation, Series A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6125/17-0804-940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aerial Surveillance for Coast Safety to Shark Detection using Image Identification
Shark detection in uncontrolled environment is a challenging problem that has not been paid much attention deeply. How to accomplish fast and effective coast surveillance impacts safety concerns in beach activities. This paper proposes a submerged shark detection, such as the white shark, using image identification from low altitude drones. The image identification is set on a drone to train real datasets of a 2.5 m long and 0.945 m^2 shark model. The Haar feature-based cascade classifier is used to detect regions of interest (ROI) to extract some features to classify water area with a shark. The proposed system is tested in two different uncontrolled areas in Kenting coast, Taiwan by presenting contrasted conditions. The adopt technique reaches an average of 19 frames/second based on different altitudes of drone experiments from 8 to 22 m above sea level in static and dynamic detections for 30 minutes endurance. The system achieves a true detection’s average of 99.5% by correct classification and the mean score on total false positive detection is 3.85%. The detection rate varies with the altitude and the weather conditions which is sensitive in building an altitude-based image detection system. The experiments show very effective results to detect sharks on sea coast to reach a lower false positive detection rate.