{"title":"从Khovanov-Rozanskylink同调看4流形的不变量","authors":"S. Morrison, K. Walker, Paul Wedrich","doi":"10.2140/gt.2022.26.3367","DOIUrl":null,"url":null,"abstract":"We use Khovanov-Rozansky gl(N) link homology to define invariants of oriented smooth 4-manifolds, as skein modules constructed from certain 4-categories with well-behaved duals. The technical heart of this construction is a proof of the sweep-around property, which makes these link homologies well defined in the 3-sphere.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Invariants of 4–manifolds from Khovanov–Rozansky\\nlink homology\",\"authors\":\"S. Morrison, K. Walker, Paul Wedrich\",\"doi\":\"10.2140/gt.2022.26.3367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Khovanov-Rozansky gl(N) link homology to define invariants of oriented smooth 4-manifolds, as skein modules constructed from certain 4-categories with well-behaved duals. The technical heart of this construction is a proof of the sweep-around property, which makes these link homologies well defined in the 3-sphere.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.3367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Invariants of 4–manifolds from Khovanov–Rozansky
link homology
We use Khovanov-Rozansky gl(N) link homology to define invariants of oriented smooth 4-manifolds, as skein modules constructed from certain 4-categories with well-behaved duals. The technical heart of this construction is a proof of the sweep-around property, which makes these link homologies well defined in the 3-sphere.