数字图像星座识别

Zsuzsanna Molnár, Dániel Kiss
{"title":"数字图像星座识别","authors":"Zsuzsanna Molnár, Dániel Kiss","doi":"10.1109/SACI58269.2023.10158564","DOIUrl":null,"url":null,"abstract":"In this paper, we present an optimization-based approach for star constellation recognition. The main components of the proposed procedure are the processing of digital images and the minimization of the error in point cloud matching by parameter optimization. In the optimization phase, the Nelder– Mead algorithm, the simulated annealing algorithm, and an evolutionary algorithm were used. Also, the behavior of these methods is evaluated and compared in the paper based on their average error values for different test images. Results on our test dataset showed that the Nelder–Mead simplex algorithm was performing the best in solving the recognition task.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constellation Recognition on Digital Images\",\"authors\":\"Zsuzsanna Molnár, Dániel Kiss\",\"doi\":\"10.1109/SACI58269.2023.10158564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an optimization-based approach for star constellation recognition. The main components of the proposed procedure are the processing of digital images and the minimization of the error in point cloud matching by parameter optimization. In the optimization phase, the Nelder– Mead algorithm, the simulated annealing algorithm, and an evolutionary algorithm were used. Also, the behavior of these methods is evaluated and compared in the paper based on their average error values for different test images. Results on our test dataset showed that the Nelder–Mead simplex algorithm was performing the best in solving the recognition task.\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于优化的星群识别方法。该方法的主要组成部分是数字图像的处理和通过参数优化使点云匹配误差最小化。在优化阶段,采用了Nelder - Mead算法、模拟退火算法和进化算法。此外,本文还对这些方法在不同测试图像下的平均误差值进行了评价和比较。在我们的测试数据集上的结果表明,Nelder-Mead单纯形算法在解决识别任务方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constellation Recognition on Digital Images
In this paper, we present an optimization-based approach for star constellation recognition. The main components of the proposed procedure are the processing of digital images and the minimization of the error in point cloud matching by parameter optimization. In the optimization phase, the Nelder– Mead algorithm, the simulated annealing algorithm, and an evolutionary algorithm were used. Also, the behavior of these methods is evaluated and compared in the paper based on their average error values for different test images. Results on our test dataset showed that the Nelder–Mead simplex algorithm was performing the best in solving the recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信