降低功率方法:如何在估计全带宽动态的同时唤起低带宽行为

W. Mugge, D. Abbink, F. V. D. Helm
{"title":"降低功率方法:如何在估计全带宽动态的同时唤起低带宽行为","authors":"W. Mugge, D. Abbink, F. V. D. Helm","doi":"10.1109/ICORR.2007.4428483","DOIUrl":null,"url":null,"abstract":"Many human motion control studies use system identification methods to estimate the human admittance (the frequency response function from force to position). Admittance was found to be affected by task instruction, environmental properties and perturbation properties. From literature it is known the frequency content (bandwidth) of the perturbation modulates the admittance, due to modulation of the reflexive feedback. However, reducing the perturbation bandwidth reduces the identifiable admittance bandwidth. Yet, the full dynamic range is necessary to understand the changes in control behaviour, and also to ensure accurate parametric fits of neuromusculoskeletal models to the estimated admittance. The goal of this study is to develop a perturbation signal that evokes low bandwidth control behaviour while it enables identification over the full admittance bandwidth. This study introduces the Reduced Power Method. Effectively, multisine torque perturbations are supplemented with reduced power (a small percentage of full power) beyond the perturbation bandwidth, large enough to allow accurate identification, and small enough not to influence control behaviour. The method was tested in an experimental study. The dynamic ankle control behaviour of subjects (n=10) was measured while performing a variety of tasks in face of continuous torque perturbations with and without the addition of reduced power. The estimated admittance varied substantially as a result of task instruction and perturbation bandwidth, but not as a result of the additional reduced power. In conclusion, the proposed method was successful in estimating the full dynamics of the admittance while the resulting control behaviour was adapted to the low-frequent full power perturbations.","PeriodicalId":197465,"journal":{"name":"2007 IEEE 10th International Conference on Rehabilitation Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Reduced Power Method: how to evoke low-bandwidth behaviour while estimating full-bandwidth dynamics\",\"authors\":\"W. Mugge, D. Abbink, F. V. D. Helm\",\"doi\":\"10.1109/ICORR.2007.4428483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many human motion control studies use system identification methods to estimate the human admittance (the frequency response function from force to position). Admittance was found to be affected by task instruction, environmental properties and perturbation properties. From literature it is known the frequency content (bandwidth) of the perturbation modulates the admittance, due to modulation of the reflexive feedback. However, reducing the perturbation bandwidth reduces the identifiable admittance bandwidth. Yet, the full dynamic range is necessary to understand the changes in control behaviour, and also to ensure accurate parametric fits of neuromusculoskeletal models to the estimated admittance. The goal of this study is to develop a perturbation signal that evokes low bandwidth control behaviour while it enables identification over the full admittance bandwidth. This study introduces the Reduced Power Method. Effectively, multisine torque perturbations are supplemented with reduced power (a small percentage of full power) beyond the perturbation bandwidth, large enough to allow accurate identification, and small enough not to influence control behaviour. The method was tested in an experimental study. The dynamic ankle control behaviour of subjects (n=10) was measured while performing a variety of tasks in face of continuous torque perturbations with and without the addition of reduced power. The estimated admittance varied substantially as a result of task instruction and perturbation bandwidth, but not as a result of the additional reduced power. In conclusion, the proposed method was successful in estimating the full dynamics of the admittance while the resulting control behaviour was adapted to the low-frequent full power perturbations.\",\"PeriodicalId\":197465,\"journal\":{\"name\":\"2007 IEEE 10th International Conference on Rehabilitation Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 10th International Conference on Rehabilitation Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2007.4428483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 10th International Conference on Rehabilitation Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2007.4428483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

许多人体运动控制研究使用系统识别方法来估计人体导纳(从力到位置的频率响应函数)。发现导纳受任务指示、环境性质和微扰性质的影响。从文献中得知,由于自反反馈的调制,扰动的频率含量(带宽)调制了导纳。然而,减少微扰带宽会减少可识别导纳带宽。然而,完整的动态范围对于理解控制行为的变化,以及确保神经肌肉骨骼模型与估计导纳的准确参数拟合是必要的。本研究的目标是开发一种扰动信号,该信号可以唤起低带宽控制行为,同时可以在全导纳带宽上进行识别。本研究介绍了降功耗法。有效地,多正弦转矩扰动补充了超过扰动带宽的降低功率(占全功率的一小部分),足够大以允许准确识别,并且足够小以不影响控制行为。该方法在实验研究中得到了验证。研究人员测量了受试者(n=10)在执行各种任务时的动态踝关节控制行为,这些任务面对连续的扭矩扰动,有或没有增加功率降低。由于任务指令和扰动带宽的影响,估计导纳发生了很大的变化,而不是由于额外降低的功率。总之,所提出的方法在估计导纳的全动力学方面是成功的,而所得到的控制行为适应于低频的全功率扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Power Method: how to evoke low-bandwidth behaviour while estimating full-bandwidth dynamics
Many human motion control studies use system identification methods to estimate the human admittance (the frequency response function from force to position). Admittance was found to be affected by task instruction, environmental properties and perturbation properties. From literature it is known the frequency content (bandwidth) of the perturbation modulates the admittance, due to modulation of the reflexive feedback. However, reducing the perturbation bandwidth reduces the identifiable admittance bandwidth. Yet, the full dynamic range is necessary to understand the changes in control behaviour, and also to ensure accurate parametric fits of neuromusculoskeletal models to the estimated admittance. The goal of this study is to develop a perturbation signal that evokes low bandwidth control behaviour while it enables identification over the full admittance bandwidth. This study introduces the Reduced Power Method. Effectively, multisine torque perturbations are supplemented with reduced power (a small percentage of full power) beyond the perturbation bandwidth, large enough to allow accurate identification, and small enough not to influence control behaviour. The method was tested in an experimental study. The dynamic ankle control behaviour of subjects (n=10) was measured while performing a variety of tasks in face of continuous torque perturbations with and without the addition of reduced power. The estimated admittance varied substantially as a result of task instruction and perturbation bandwidth, but not as a result of the additional reduced power. In conclusion, the proposed method was successful in estimating the full dynamics of the admittance while the resulting control behaviour was adapted to the low-frequent full power perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信