面向未来多处理器片上系统的混合光网络片上能量感知路由

Lin Liu, Yuanyuan Yang
{"title":"面向未来多处理器片上系统的混合光网络片上能量感知路由","authors":"Lin Liu, Yuanyuan Yang","doi":"10.1145/1872007.1872029","DOIUrl":null,"url":null,"abstract":"With the development of Multi-Processor System-on-Chip (MP-SoC) in recent years, the intra-chip communication is becoming the bottleneck of the whole system. Current electronic network-on-chip (NoC) designs face serious challenges, such as bandwidth, latency and power consumption. Optical interconnection networks are a promising technology to overcome these problems. In this paper, we study the routing problem in optical NoCs with arbitrary network topologies. Traditionally, a minimum hop count routing policy is employed for electronic NoCs, as it minimizes both power consumption and latency. However, due to the special architecture of current optical NoC routers , such a minimum-hop path may not be energy-wise optimal. Using a detailed model of optical routers we reduce the energy-aware routing problem into a shortest-path problem, which can then be solved using one of the many well known techniques. By applying our approach to different popular topologies, we show that the energy consumed in data communication in an optical NoC can be significantly reduced. We also propose the use of optical burst switching (OBS) in optical NoCs to reduce control overhead, as well as an adaptive routing mechanism to reduce energy consumption without introducing extra latency. Our simulation results demonstrate the effectiveness of the proposed algorithms.","PeriodicalId":262685,"journal":{"name":"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Energy-aware routing in hybrid optical network-on-chip for future Multi-Processor System-on-Chip\",\"authors\":\"Lin Liu, Yuanyuan Yang\",\"doi\":\"10.1145/1872007.1872029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of Multi-Processor System-on-Chip (MP-SoC) in recent years, the intra-chip communication is becoming the bottleneck of the whole system. Current electronic network-on-chip (NoC) designs face serious challenges, such as bandwidth, latency and power consumption. Optical interconnection networks are a promising technology to overcome these problems. In this paper, we study the routing problem in optical NoCs with arbitrary network topologies. Traditionally, a minimum hop count routing policy is employed for electronic NoCs, as it minimizes both power consumption and latency. However, due to the special architecture of current optical NoC routers , such a minimum-hop path may not be energy-wise optimal. Using a detailed model of optical routers we reduce the energy-aware routing problem into a shortest-path problem, which can then be solved using one of the many well known techniques. By applying our approach to different popular topologies, we show that the energy consumed in data communication in an optical NoC can be significantly reduced. We also propose the use of optical burst switching (OBS) in optical NoCs to reduce control overhead, as well as an adaptive routing mechanism to reduce energy consumption without introducing extra latency. Our simulation results demonstrate the effectiveness of the proposed algorithms.\",\"PeriodicalId\":262685,\"journal\":{\"name\":\"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1872007.1872029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1872007.1872029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

随着近年来多处理器片上系统(MP-SoC)的发展,片内通信成为整个系统的瓶颈。当前的电子片上网络(NoC)设计面临着带宽、延迟和功耗等严峻挑战。光互连网络是克服这些问题的一种很有前途的技术。本文研究了具有任意网络拓扑结构的光noc中的路由问题。传统上,对于电子noc采用最小跳数路由策略,因为它可以最小化功耗和延迟。然而,由于当前光NoC路由器的特殊结构,这种最小跳数路径可能不是能量最优的。利用光路由器的详细模型,我们将能量感知路由问题简化为最短路径问题,然后可以使用许多众所周知的技术之一来解决。通过将我们的方法应用于不同的流行拓扑结构,我们表明光学NoC中数据通信消耗的能量可以显着降低。我们还建议在光noc中使用光突发交换(OBS)来减少控制开销,以及自适应路由机制来减少能量消耗而不会引入额外的延迟。仿真结果验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-aware routing in hybrid optical network-on-chip for future Multi-Processor System-on-Chip
With the development of Multi-Processor System-on-Chip (MP-SoC) in recent years, the intra-chip communication is becoming the bottleneck of the whole system. Current electronic network-on-chip (NoC) designs face serious challenges, such as bandwidth, latency and power consumption. Optical interconnection networks are a promising technology to overcome these problems. In this paper, we study the routing problem in optical NoCs with arbitrary network topologies. Traditionally, a minimum hop count routing policy is employed for electronic NoCs, as it minimizes both power consumption and latency. However, due to the special architecture of current optical NoC routers , such a minimum-hop path may not be energy-wise optimal. Using a detailed model of optical routers we reduce the energy-aware routing problem into a shortest-path problem, which can then be solved using one of the many well known techniques. By applying our approach to different popular topologies, we show that the energy consumed in data communication in an optical NoC can be significantly reduced. We also propose the use of optical burst switching (OBS) in optical NoCs to reduce control overhead, as well as an adaptive routing mechanism to reduce energy consumption without introducing extra latency. Our simulation results demonstrate the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信