压力传感器的初级正弦校准

M. Mende
{"title":"压力传感器的初级正弦校准","authors":"M. Mende","doi":"10.51843/wsproceedings.2018.28","DOIUrl":null,"url":null,"abstract":"Pressure transducers are frequently used in dynamic environments such as combustion engines, aerospace applications or industrial process control. Like for every measurement task it is essential to know the uncertainty of the obtained measurement result, even in a dynamic environment. Therefore it is remarkable that there is no traceable standardized method to quantify the frequency response of a pressure transducer. Due to this lack of investigation methods the authors have made an effort to develop a primary method to calibrate pressure transducers dynamically. This method allows to measure the frequency response with sufficient pressure amplitudes up to 1 MPa in a frequency range up to 10 kHz. In the paper the pistonphone based apparatus is presented. This pressure generator compresses a liquid by a piston. The fundamental idea is to determine the pressure rise of the employed fluid primarily by measuring the movement of the piston. Therefore the mass balance is applied to the device and leads to Ṗ=KA Ẋ/V0 Where Ṗ is the dynamic pressure, K is the bulk modulus, A is the area of the piston, V0 is the initial volume of the fluid and Ẋ is the velocity of the piston. The frequency response of the transducer is then calculated by (f)=U(f) Ṗ(f)Where U(f) is the frequency dependent output of the transducer. Besides a detailed discussion of the apparatus, the paper includes the investigation of the measurement uncertainty. Namely the uncertainty contribution of the piston area A, the initial volume V0 and the deviation between an iso-thermal bulk modulus K at low frequencies and the adiabatic bulk modulus at higher frequencies. Furthermore first measurement results will be presented, which confirm the test setup and the primary approach to measuring the frequency response.","PeriodicalId":120844,"journal":{"name":"NCSL International Workshop & Symposium Conference Proceedings 2018","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primary Sinusoidal Calibration of Pressure Transducers\",\"authors\":\"M. Mende\",\"doi\":\"10.51843/wsproceedings.2018.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pressure transducers are frequently used in dynamic environments such as combustion engines, aerospace applications or industrial process control. Like for every measurement task it is essential to know the uncertainty of the obtained measurement result, even in a dynamic environment. Therefore it is remarkable that there is no traceable standardized method to quantify the frequency response of a pressure transducer. Due to this lack of investigation methods the authors have made an effort to develop a primary method to calibrate pressure transducers dynamically. This method allows to measure the frequency response with sufficient pressure amplitudes up to 1 MPa in a frequency range up to 10 kHz. In the paper the pistonphone based apparatus is presented. This pressure generator compresses a liquid by a piston. The fundamental idea is to determine the pressure rise of the employed fluid primarily by measuring the movement of the piston. Therefore the mass balance is applied to the device and leads to Ṗ=KA Ẋ/V0 Where Ṗ is the dynamic pressure, K is the bulk modulus, A is the area of the piston, V0 is the initial volume of the fluid and Ẋ is the velocity of the piston. The frequency response of the transducer is then calculated by (f)=U(f) Ṗ(f)Where U(f) is the frequency dependent output of the transducer. Besides a detailed discussion of the apparatus, the paper includes the investigation of the measurement uncertainty. Namely the uncertainty contribution of the piston area A, the initial volume V0 and the deviation between an iso-thermal bulk modulus K at low frequencies and the adiabatic bulk modulus at higher frequencies. Furthermore first measurement results will be presented, which confirm the test setup and the primary approach to measuring the frequency response.\",\"PeriodicalId\":120844,\"journal\":{\"name\":\"NCSL International Workshop & Symposium Conference Proceedings 2018\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCSL International Workshop & Symposium Conference Proceedings 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51843/wsproceedings.2018.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCSL International Workshop & Symposium Conference Proceedings 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51843/wsproceedings.2018.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压力传感器经常用于动态环境,如内燃机,航空航天应用或工业过程控制。就像每一个测量任务一样,即使在动态环境中,也必须知道所获得的测量结果的不确定度。因此,值得注意的是,没有可追溯的标准化方法来量化压力传感器的频率响应。由于缺乏研究方法,作者努力开发一种动态校准压力传感器的主要方法。该方法允许在高达10khz的频率范围内测量压力幅值高达1mpa的频率响应。本文介绍了一种基于活塞电话的检测装置。这种压力发生器通过活塞压缩液体。其基本思想是主要通过测量活塞的运动来确定所用流体的压力上升。因此,将质量平衡应用于该装置,得到Ṗ=KA Ẋ/V0,其中Ṗ为动压力,K为体积模量,A为活塞面积,V0为流体的初始体积,Ẋ为活塞的速度。换能器的频率响应然后由(f)=U(f) Ṗ(f)计算,其中U(f)是换能器的频率相关输出。本文除了对仪器进行了详细的讨论外,还对测量不确定度进行了研究。即活塞面积A的不确定性贡献,初始体积V0,以及低频等温体积模量K与高频绝热体积模量之间的偏差。此外,将给出第一次测量结果,以确认测试设置和测量频率响应的主要方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primary Sinusoidal Calibration of Pressure Transducers
Pressure transducers are frequently used in dynamic environments such as combustion engines, aerospace applications or industrial process control. Like for every measurement task it is essential to know the uncertainty of the obtained measurement result, even in a dynamic environment. Therefore it is remarkable that there is no traceable standardized method to quantify the frequency response of a pressure transducer. Due to this lack of investigation methods the authors have made an effort to develop a primary method to calibrate pressure transducers dynamically. This method allows to measure the frequency response with sufficient pressure amplitudes up to 1 MPa in a frequency range up to 10 kHz. In the paper the pistonphone based apparatus is presented. This pressure generator compresses a liquid by a piston. The fundamental idea is to determine the pressure rise of the employed fluid primarily by measuring the movement of the piston. Therefore the mass balance is applied to the device and leads to Ṗ=KA Ẋ/V0 Where Ṗ is the dynamic pressure, K is the bulk modulus, A is the area of the piston, V0 is the initial volume of the fluid and Ẋ is the velocity of the piston. The frequency response of the transducer is then calculated by (f)=U(f) Ṗ(f)Where U(f) is the frequency dependent output of the transducer. Besides a detailed discussion of the apparatus, the paper includes the investigation of the measurement uncertainty. Namely the uncertainty contribution of the piston area A, the initial volume V0 and the deviation between an iso-thermal bulk modulus K at low frequencies and the adiabatic bulk modulus at higher frequencies. Furthermore first measurement results will be presented, which confirm the test setup and the primary approach to measuring the frequency response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信