无线移动边缘计算的计算效率最大化

Fuhui Zhou, Haijian Sun, Zheng Chu, R. Hu
{"title":"无线移动边缘计算的计算效率最大化","authors":"Fuhui Zhou, Haijian Sun, Zheng Chu, R. Hu","doi":"10.1109/GLOCOM.2018.8647509","DOIUrl":null,"url":null,"abstract":"Energy-efficient computation is an inevitable trend for mobile edge computing (MEC) networks. However, resource allocation strategies for maximizing the computation efficiency have not been fully investigated. In this paper a computation efficiency maximization problem is formulated in the wireless-powered MEC network under a practical non-linear energy harvesting model. The energy harvesting time, the local computing frequency, the offtoading time, and power are all jointly optimized to maximize the computation efficiency under the max-min fairness criterion. The problem is non-convex and challenging to solve. An iterative algorithm is proposed to solve this problem. Simulation results show that our proposed resource allocation scheme outperforms the benchmark schemes in terms of the computation efficiency and verify the efficiency of our proposed algorithm. A tradeoff is elucidated between the achievable computation efficiency and the computation bits.","PeriodicalId":201848,"journal":{"name":"2018 IEEE Global Communications Conference (GLOBECOM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Computation Efficiency Maximization for Wireless-Powered Mobile Edge Computing\",\"authors\":\"Fuhui Zhou, Haijian Sun, Zheng Chu, R. Hu\",\"doi\":\"10.1109/GLOCOM.2018.8647509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficient computation is an inevitable trend for mobile edge computing (MEC) networks. However, resource allocation strategies for maximizing the computation efficiency have not been fully investigated. In this paper a computation efficiency maximization problem is formulated in the wireless-powered MEC network under a practical non-linear energy harvesting model. The energy harvesting time, the local computing frequency, the offtoading time, and power are all jointly optimized to maximize the computation efficiency under the max-min fairness criterion. The problem is non-convex and challenging to solve. An iterative algorithm is proposed to solve this problem. Simulation results show that our proposed resource allocation scheme outperforms the benchmark schemes in terms of the computation efficiency and verify the efficiency of our proposed algorithm. A tradeoff is elucidated between the achievable computation efficiency and the computation bits.\",\"PeriodicalId\":201848,\"journal\":{\"name\":\"2018 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2018.8647509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2018.8647509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

节能计算是移动边缘计算(MEC)网络发展的必然趋势。然而,最大化计算效率的资源分配策略还没有得到充分的研究。本文提出了一种实用的非线性能量收集模型下的无线供电MEC网络计算效率最大化问题。在最大-最小公平性准则下,对能量收集时间、局部计算频率、卸载时间和功率进行联合优化,使计算效率最大化。这个问题是非凸的,很难解决。提出了一种迭代算法来解决这一问题。仿真结果表明,所提出的资源分配方案在计算效率上优于基准方案,验证了所提出算法的有效性。在可实现的计算效率和计算位之间进行了权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation Efficiency Maximization for Wireless-Powered Mobile Edge Computing
Energy-efficient computation is an inevitable trend for mobile edge computing (MEC) networks. However, resource allocation strategies for maximizing the computation efficiency have not been fully investigated. In this paper a computation efficiency maximization problem is formulated in the wireless-powered MEC network under a practical non-linear energy harvesting model. The energy harvesting time, the local computing frequency, the offtoading time, and power are all jointly optimized to maximize the computation efficiency under the max-min fairness criterion. The problem is non-convex and challenging to solve. An iterative algorithm is proposed to solve this problem. Simulation results show that our proposed resource allocation scheme outperforms the benchmark schemes in terms of the computation efficiency and verify the efficiency of our proposed algorithm. A tradeoff is elucidated between the achievable computation efficiency and the computation bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信