矿物油浸变压器绝缘制造过程中的介电响应分析

T. Nganpitak, P. Nimsanong, S. Maneerot, N. Pattanadech
{"title":"矿物油浸变压器绝缘制造过程中的介电响应分析","authors":"T. Nganpitak, P. Nimsanong, S. Maneerot, N. Pattanadech","doi":"10.1109/ICDL.2019.8796642","DOIUrl":null,"url":null,"abstract":"Polarization and Depolarization current (PDC) method is one of non-destructive insulation testing methods that can be used for diagnosis the insulation conditions of high voltage equipment. This paper presents the PDC analysis of an oil immersed distribution transformer measured during the manufacturing process. A 22 kV, 30 kVA single phase transformer was designed and constructed. During manufacturing process, the polarization current and depolarization current of the transformer insulation were measured for 6 case studies as follows: 1) paper insulation between iron core and low voltage (LV) windings before dry and vacuum in the oven, 2) paper insulation between LV and high voltage (HV) windings before dry and vacuum in the oven, 3) paper insulation between iron core and LV windings after dry and vacuum in the oven, 4) paper insulation between LV and HV windings after dry and vacuum in the oven, 5) oilpaper insulation between iron core and LV windings after dry and impregnation process and 6) oil-paper insulation between LV and HV windings after dry and impregnation process. Then, PDC test results were analyzed. It was found that the moisture content in the paper insulation clearly affected the capacitance at power frequency, and PDC shapes. Besides, the impregnation process had a good effect on the capacitance ratio and dielectric dissipation factor. Moreover, the current difference of dry paper insulation between HV and LV windings presented the nonlinear characteristic both before and after impregnation process.","PeriodicalId":102217,"journal":{"name":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dielectric Response Analysis of Mineral Oil Immersed Transformer Insulation during Manufacturing Process\",\"authors\":\"T. Nganpitak, P. Nimsanong, S. Maneerot, N. Pattanadech\",\"doi\":\"10.1109/ICDL.2019.8796642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polarization and Depolarization current (PDC) method is one of non-destructive insulation testing methods that can be used for diagnosis the insulation conditions of high voltage equipment. This paper presents the PDC analysis of an oil immersed distribution transformer measured during the manufacturing process. A 22 kV, 30 kVA single phase transformer was designed and constructed. During manufacturing process, the polarization current and depolarization current of the transformer insulation were measured for 6 case studies as follows: 1) paper insulation between iron core and low voltage (LV) windings before dry and vacuum in the oven, 2) paper insulation between LV and high voltage (HV) windings before dry and vacuum in the oven, 3) paper insulation between iron core and LV windings after dry and vacuum in the oven, 4) paper insulation between LV and HV windings after dry and vacuum in the oven, 5) oilpaper insulation between iron core and LV windings after dry and impregnation process and 6) oil-paper insulation between LV and HV windings after dry and impregnation process. Then, PDC test results were analyzed. It was found that the moisture content in the paper insulation clearly affected the capacitance at power frequency, and PDC shapes. Besides, the impregnation process had a good effect on the capacitance ratio and dielectric dissipation factor. Moreover, the current difference of dry paper insulation between HV and LV windings presented the nonlinear characteristic both before and after impregnation process.\",\"PeriodicalId\":102217,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2019.8796642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2019.8796642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

极化去极化电流法(PDC)是一种无损检测方法,可用于诊断高压设备的绝缘状况。本文介绍了一种油浸式配电变压器在制造过程中实测的PDC分析。设计并建造了一台22 kV、30 kVA单相变压器。在制造过程中,对变压器绝缘的极化电流和去极化电流进行了6个案例的测量,具体如下:1)铁芯和低压(LV)绕组在烘箱内干燥和真空前用纸绝缘,2)低压(HV)绕组在烘箱内干燥和真空前用纸绝缘,3)铁芯和低压(LV)绕组在烘箱内干燥和真空后用纸绝缘,4)低压(LV)绕组在烘箱内干燥和真空后用纸绝缘,5)干浸渍后铁芯与低压绕组之间的油纸绝缘;6)干浸渍后低压绕组与高压绕组之间的油纸绝缘。然后对PDC试验结果进行分析。研究发现,绝缘纸的含水率对工频电容和PDC形状有明显的影响。此外,浸渍工艺对电容比和介电损耗系数也有很好的影响。此外,浸渍前后干纸绝缘在高压和低压绕组之间的电流差均呈现非线性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dielectric Response Analysis of Mineral Oil Immersed Transformer Insulation during Manufacturing Process
Polarization and Depolarization current (PDC) method is one of non-destructive insulation testing methods that can be used for diagnosis the insulation conditions of high voltage equipment. This paper presents the PDC analysis of an oil immersed distribution transformer measured during the manufacturing process. A 22 kV, 30 kVA single phase transformer was designed and constructed. During manufacturing process, the polarization current and depolarization current of the transformer insulation were measured for 6 case studies as follows: 1) paper insulation between iron core and low voltage (LV) windings before dry and vacuum in the oven, 2) paper insulation between LV and high voltage (HV) windings before dry and vacuum in the oven, 3) paper insulation between iron core and LV windings after dry and vacuum in the oven, 4) paper insulation between LV and HV windings after dry and vacuum in the oven, 5) oilpaper insulation between iron core and LV windings after dry and impregnation process and 6) oil-paper insulation between LV and HV windings after dry and impregnation process. Then, PDC test results were analyzed. It was found that the moisture content in the paper insulation clearly affected the capacitance at power frequency, and PDC shapes. Besides, the impregnation process had a good effect on the capacitance ratio and dielectric dissipation factor. Moreover, the current difference of dry paper insulation between HV and LV windings presented the nonlinear characteristic both before and after impregnation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信