L. Rakov, Л.Т. Раков, V. Prokofiev, В Ю Прокофьев, L. D. Zorina, Л.Д. Зорина
{"title":"俄罗斯东外贝加尔Darasun金矿田石英结构通道中补偿H+和Li+离子:电子顺磁共振数据","authors":"L. Rakov, Л.Т. Раков, V. Prokofiev, В Ю Прокофьев, L. D. Zorina, Л.Д. Зорина","doi":"10.31857/S0016-777061175-96","DOIUrl":null,"url":null,"abstract":"The composition and diffusion mobility of the compensating ions in the quartz structural channels of the gold fields in the Darasun, Teremkinskoye, and Talatuy gold fields of the Darasun ore field were examined using the electron paramagnetic resonance method. The assessment of the properties and peculiarities of the ion distribution in quartz was based on their ability to participate in the neutralization of the electric charges of the structural defects occurring in the minerals. In this regard, the ion composition was evaluated by the ratio of the concentrations of the Ti-centers using various compensators. Their mobility was determined by the center formation rate during the quartz radiation exposure. The research demonstrated the availability of two major compensating ions, H+ and Li+, in the quartz structural channels of the gold fields in the Darasun ore field. The diffusion mobility of the H+ ions in the channels was observed to be 1–2 orders of magnitude higher than that of Li+. The correlation link between the compensating ions in the mineral and fluid compositions was not obtained based on the data analysis. A difference was identified between the ratio of the H+ and Li+ concentrations in the quartz structural channels of different fields. Further, the highest concentration of H+ ions and the lowest concentration of Li+ ions were recorded for the quartz in the Darasun field; the inverse correlation was observed for the quartz in the Talatuy field, which can be attributed to the mixing of the fluid gas component during the ore formation process. The electron paramagnetic resonance method can be used for the quantitative assessment of the degree of quartz dynamic recrystallization.","PeriodicalId":342720,"journal":{"name":"Геология рудных месторождений","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensating H+ and Li+ ions in quartz structural channels of the gold fields of Darasun ore field (Eastern Transbaikal, Russia): electron paramagnetic resonance data\",\"authors\":\"L. Rakov, Л.Т. Раков, V. Prokofiev, В Ю Прокофьев, L. D. Zorina, Л.Д. Зорина\",\"doi\":\"10.31857/S0016-777061175-96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The composition and diffusion mobility of the compensating ions in the quartz structural channels of the gold fields in the Darasun, Teremkinskoye, and Talatuy gold fields of the Darasun ore field were examined using the electron paramagnetic resonance method. The assessment of the properties and peculiarities of the ion distribution in quartz was based on their ability to participate in the neutralization of the electric charges of the structural defects occurring in the minerals. In this regard, the ion composition was evaluated by the ratio of the concentrations of the Ti-centers using various compensators. Their mobility was determined by the center formation rate during the quartz radiation exposure. The research demonstrated the availability of two major compensating ions, H+ and Li+, in the quartz structural channels of the gold fields in the Darasun ore field. The diffusion mobility of the H+ ions in the channels was observed to be 1–2 orders of magnitude higher than that of Li+. The correlation link between the compensating ions in the mineral and fluid compositions was not obtained based on the data analysis. A difference was identified between the ratio of the H+ and Li+ concentrations in the quartz structural channels of different fields. Further, the highest concentration of H+ ions and the lowest concentration of Li+ ions were recorded for the quartz in the Darasun field; the inverse correlation was observed for the quartz in the Talatuy field, which can be attributed to the mixing of the fluid gas component during the ore formation process. The electron paramagnetic resonance method can be used for the quantitative assessment of the degree of quartz dynamic recrystallization.\",\"PeriodicalId\":342720,\"journal\":{\"name\":\"Геология рудных месторождений\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Геология рудных месторождений\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/S0016-777061175-96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Геология рудных месторождений","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0016-777061175-96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compensating H+ and Li+ ions in quartz structural channels of the gold fields of Darasun ore field (Eastern Transbaikal, Russia): electron paramagnetic resonance data
The composition and diffusion mobility of the compensating ions in the quartz structural channels of the gold fields in the Darasun, Teremkinskoye, and Talatuy gold fields of the Darasun ore field were examined using the electron paramagnetic resonance method. The assessment of the properties and peculiarities of the ion distribution in quartz was based on their ability to participate in the neutralization of the electric charges of the structural defects occurring in the minerals. In this regard, the ion composition was evaluated by the ratio of the concentrations of the Ti-centers using various compensators. Their mobility was determined by the center formation rate during the quartz radiation exposure. The research demonstrated the availability of two major compensating ions, H+ and Li+, in the quartz structural channels of the gold fields in the Darasun ore field. The diffusion mobility of the H+ ions in the channels was observed to be 1–2 orders of magnitude higher than that of Li+. The correlation link between the compensating ions in the mineral and fluid compositions was not obtained based on the data analysis. A difference was identified between the ratio of the H+ and Li+ concentrations in the quartz structural channels of different fields. Further, the highest concentration of H+ ions and the lowest concentration of Li+ ions were recorded for the quartz in the Darasun field; the inverse correlation was observed for the quartz in the Talatuy field, which can be attributed to the mixing of the fluid gas component during the ore formation process. The electron paramagnetic resonance method can be used for the quantitative assessment of the degree of quartz dynamic recrystallization.