液态复合材料成型中赛车跟踪效果的建模

A. W. Chan, R. J. Morgan
{"title":"液态复合材料成型中赛车跟踪效果的建模","authors":"A. W. Chan, R. J. Morgan","doi":"10.1115/imece1997-0641","DOIUrl":null,"url":null,"abstract":"\n Fabrication of polymer composite components for automotive applications typically involve the injection of a reactive polymer resin into a preform placed in a closed mold. This process, generally referred to as liquid composite molding, offers the opportunity for part consolidation and fabrication of large, complex shaped parts in a single molding step. A problem often encountered in the molding of composite components is the channeling flow (or race tracking) of resin along the periphery of the preform. This race tracking flow occurs as a result of a small clearance between the preform periphery and the mold. The resistance to flow in the peripheral clearance is much smaller than that in the bulk preform; hence, resin preferentially flows through this region.\n This paper will present an integrated approach to modeling flow (both in the preform and along the periphery) in the mold cavity. The objective is to model race tracking as part of the overall flow problem. The solution essentially involves the interfacing of the two flow domains along the preform periphery. An integrated approach will not only lead to more accurate model predictions, but will also lead to improved computational efficiency. Example case studies will be presented to illustrate the importance of including race tracking in modeling liquid composite molding operations.","PeriodicalId":220828,"journal":{"name":"CAE and Intelligent Processing of Polymeric Materials","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling Race Tracking Effects in Liquid Composite Molding\",\"authors\":\"A. W. Chan, R. J. Morgan\",\"doi\":\"10.1115/imece1997-0641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fabrication of polymer composite components for automotive applications typically involve the injection of a reactive polymer resin into a preform placed in a closed mold. This process, generally referred to as liquid composite molding, offers the opportunity for part consolidation and fabrication of large, complex shaped parts in a single molding step. A problem often encountered in the molding of composite components is the channeling flow (or race tracking) of resin along the periphery of the preform. This race tracking flow occurs as a result of a small clearance between the preform periphery and the mold. The resistance to flow in the peripheral clearance is much smaller than that in the bulk preform; hence, resin preferentially flows through this region.\\n This paper will present an integrated approach to modeling flow (both in the preform and along the periphery) in the mold cavity. The objective is to model race tracking as part of the overall flow problem. The solution essentially involves the interfacing of the two flow domains along the preform periphery. An integrated approach will not only lead to more accurate model predictions, but will also lead to improved computational efficiency. Example case studies will be presented to illustrate the importance of including race tracking in modeling liquid composite molding operations.\",\"PeriodicalId\":220828,\"journal\":{\"name\":\"CAE and Intelligent Processing of Polymeric Materials\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAE and Intelligent Processing of Polymeric Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAE and Intelligent Processing of Polymeric Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用于汽车应用的聚合物复合部件的制造通常涉及将反应性聚合物树脂注射到放置在封闭模具中的预成型中。这个过程,通常被称为液体复合成型,提供了一个单一成型步骤的零件巩固和制造大型,复杂形状零件的机会。在复合材料部件的成型中经常遇到的一个问题是树脂沿着预成型体的外围的通道流动(或race tracking)。由于预成型外围和模具之间的小间隙,这种race跟踪流发生。外围间隙内的流动阻力远小于散装预制件内的流动阻力;因此,树脂优先流过这个区域。本文将提出一种综合的方法来建模流(在预成形和沿外围)在模具腔。我们的目标是将比赛跟踪作为整体流问题的一部分进行建模。该解决方案基本上涉及沿预成形外围的两个流域的接口。综合的方法不仅会导致更准确的模型预测,而且还会导致计算效率的提高。示例案例研究将提出,以说明包括比赛跟踪建模液体复合成型操作的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Race Tracking Effects in Liquid Composite Molding
Fabrication of polymer composite components for automotive applications typically involve the injection of a reactive polymer resin into a preform placed in a closed mold. This process, generally referred to as liquid composite molding, offers the opportunity for part consolidation and fabrication of large, complex shaped parts in a single molding step. A problem often encountered in the molding of composite components is the channeling flow (or race tracking) of resin along the periphery of the preform. This race tracking flow occurs as a result of a small clearance between the preform periphery and the mold. The resistance to flow in the peripheral clearance is much smaller than that in the bulk preform; hence, resin preferentially flows through this region. This paper will present an integrated approach to modeling flow (both in the preform and along the periphery) in the mold cavity. The objective is to model race tracking as part of the overall flow problem. The solution essentially involves the interfacing of the two flow domains along the preform periphery. An integrated approach will not only lead to more accurate model predictions, but will also lead to improved computational efficiency. Example case studies will be presented to illustrate the importance of including race tracking in modeling liquid composite molding operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信