改进的高精度风险价值、预期不足和风险贡献估计方法

Yukio Muromachi
{"title":"改进的高精度风险价值、预期不足和风险贡献估计方法","authors":"Yukio Muromachi","doi":"10.21314/JOR.2015.314","DOIUrl":null,"url":null,"abstract":"The (marginal) risk contribution is very useful for analyzing the concentration risk in a portfolio. However, it is difficult to estimate the risk contributions for value-at-risk (VaR) and expected shortfall (ES) precisely, especially using a Monte Carlo simulation. We applied a saddlepoint approximation to estimate the distribution function, so that the difficulty of estimating the risk contributions for VaR was dissolved. In this paper, we propose new estimation methods for ES and the risk contributions for ES based on the conditional independence and a saddlepoint approximation. Numerical studies confirm that these new methods are much better than existing ones.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Estimation Methods for Value-at-Risk, Expected Shortfall and Risk Contributions with High Precision\",\"authors\":\"Yukio Muromachi\",\"doi\":\"10.21314/JOR.2015.314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The (marginal) risk contribution is very useful for analyzing the concentration risk in a portfolio. However, it is difficult to estimate the risk contributions for value-at-risk (VaR) and expected shortfall (ES) precisely, especially using a Monte Carlo simulation. We applied a saddlepoint approximation to estimate the distribution function, so that the difficulty of estimating the risk contributions for VaR was dissolved. In this paper, we propose new estimation methods for ES and the risk contributions for ES based on the conditional independence and a saddlepoint approximation. Numerical studies confirm that these new methods are much better than existing ones.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21314/JOR.2015.314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOR.2015.314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

(边际)风险贡献对于分析投资组合中的集中风险非常有用。然而,很难准确地估计风险价值(VaR)和预期不足(ES)的风险贡献,特别是使用蒙特卡罗模拟。我们采用鞍点近似来估计分布函数,从而消除了估计VaR的风险贡献的困难。本文提出了一种新的基于条件独立性和鞍点近似的ES和ES的风险贡献估计方法。数值研究证实了这些新方法比现有的方法要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Estimation Methods for Value-at-Risk, Expected Shortfall and Risk Contributions with High Precision
The (marginal) risk contribution is very useful for analyzing the concentration risk in a portfolio. However, it is difficult to estimate the risk contributions for value-at-risk (VaR) and expected shortfall (ES) precisely, especially using a Monte Carlo simulation. We applied a saddlepoint approximation to estimate the distribution function, so that the difficulty of estimating the risk contributions for VaR was dissolved. In this paper, we propose new estimation methods for ES and the risk contributions for ES based on the conditional independence and a saddlepoint approximation. Numerical studies confirm that these new methods are much better than existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信