基于深度神经网络的高分辨率眼底图像视网膜变性检测

M. Subbarao, J. T. S. Sindhu, N. N. S. Harshitha, K. Vasavi, A. S. Krishna, G. Ram
{"title":"基于深度神经网络的高分辨率眼底图像视网膜变性检测","authors":"M. Subbarao, J. T. S. Sindhu, N. N. S. Harshitha, K. Vasavi, A. S. Krishna, G. Ram","doi":"10.1109/ICEARS56392.2023.10085273","DOIUrl":null,"url":null,"abstract":"Retinal imaging analysis is used to diagnose and classify retinal diseases like age-related macular degeneration (AMD), retinal detachment, diabetic retinopathy (DR), retinitis pigmentosa, and retinoblastoma. The automated detection of retinal disorders is a significant step towards early disease diagnosis and the prevention of disease progression. Historically, a number of cutting-edge techniques have been created to aid in the automatic segmentation and detection of retinal landmarks and diseases. But new advances in deep learning and advanced ophthalmology imaging modalities have given researchers access to a whole new domain. In this paper, two multilayer deep neural networks convolutional neural network (CNN) and AlexNet are presented for the early detection of retinal degeneration. Further analysis is carried out by applying three different types of optimizers to train the classifiers, such as ADAM, RMSProp, and SGDM. The performance analysis is carried out with high-resolution fundus images at three different training rates to determine the superiority of the classifiers.","PeriodicalId":338611,"journal":{"name":"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of Retinal Degeneration via High-Resolution Fundus Images using Deep Neural Networks\",\"authors\":\"M. Subbarao, J. T. S. Sindhu, N. N. S. Harshitha, K. Vasavi, A. S. Krishna, G. Ram\",\"doi\":\"10.1109/ICEARS56392.2023.10085273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal imaging analysis is used to diagnose and classify retinal diseases like age-related macular degeneration (AMD), retinal detachment, diabetic retinopathy (DR), retinitis pigmentosa, and retinoblastoma. The automated detection of retinal disorders is a significant step towards early disease diagnosis and the prevention of disease progression. Historically, a number of cutting-edge techniques have been created to aid in the automatic segmentation and detection of retinal landmarks and diseases. But new advances in deep learning and advanced ophthalmology imaging modalities have given researchers access to a whole new domain. In this paper, two multilayer deep neural networks convolutional neural network (CNN) and AlexNet are presented for the early detection of retinal degeneration. Further analysis is carried out by applying three different types of optimizers to train the classifiers, such as ADAM, RMSProp, and SGDM. The performance analysis is carried out with high-resolution fundus images at three different training rates to determine the superiority of the classifiers.\",\"PeriodicalId\":338611,\"journal\":{\"name\":\"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEARS56392.2023.10085273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS56392.2023.10085273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视网膜成像分析用于诊断和分类视网膜疾病,如年龄相关性黄斑变性(AMD)、视网膜脱离、糖尿病性视网膜病变(DR)、视网膜色素变性和视网膜母细胞瘤。视网膜疾病的自动检测是早期疾病诊断和预防疾病进展的重要一步。从历史上看,已经创建了许多尖端技术来帮助自动分割和检测视网膜地标和疾病。但是,深度学习和先进眼科成像模式的新进展使研究人员进入了一个全新的领域。本文提出了卷积神经网络(convolutional neural network, CNN)和AlexNet两种多层深度神经网络用于视网膜变性的早期检测。进一步的分析是通过应用三种不同类型的优化器来训练分类器,如ADAM、RMSProp和SGDM。以三种不同训练速率下的高分辨率眼底图像进行性能分析,以确定分类器的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Retinal Degeneration via High-Resolution Fundus Images using Deep Neural Networks
Retinal imaging analysis is used to diagnose and classify retinal diseases like age-related macular degeneration (AMD), retinal detachment, diabetic retinopathy (DR), retinitis pigmentosa, and retinoblastoma. The automated detection of retinal disorders is a significant step towards early disease diagnosis and the prevention of disease progression. Historically, a number of cutting-edge techniques have been created to aid in the automatic segmentation and detection of retinal landmarks and diseases. But new advances in deep learning and advanced ophthalmology imaging modalities have given researchers access to a whole new domain. In this paper, two multilayer deep neural networks convolutional neural network (CNN) and AlexNet are presented for the early detection of retinal degeneration. Further analysis is carried out by applying three different types of optimizers to train the classifiers, such as ADAM, RMSProp, and SGDM. The performance analysis is carried out with high-resolution fundus images at three different training rates to determine the superiority of the classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信