利用半监督机器学习从地面摄像机检测海上目标

Eftychios E. Protopapadakis, Konstantinos Makantasis, N. Doulamis
{"title":"利用半监督机器学习从地面摄像机检测海上目标","authors":"Eftychios E. Protopapadakis, Konstantinos Makantasis, N. Doulamis","doi":"10.5220/0005456205830594","DOIUrl":null,"url":null,"abstract":"This paper presents a vision-based system for maritime surveillance, using moving PTZ cameras. The proposed methodology fuses a visual attention method that exploits low-level image features appropriately selected for maritime environment, with appropriate tracker. Such features require no assumptions about environmental nor visual conditions. The offline initialization is based on large graph semi-supervised technique in order to minimize user’s effort. System’s performance was evaluated with videos from cameras placed at Limassol port and Venetian port of Chania. Results suggest high detection ability, despite dynamically changing visual conditions and different kinds of vessels, all in real time.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maritime Targets Detection from Ground Cameras Exploiting Semi-supervised Machine Learning\",\"authors\":\"Eftychios E. Protopapadakis, Konstantinos Makantasis, N. Doulamis\",\"doi\":\"10.5220/0005456205830594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a vision-based system for maritime surveillance, using moving PTZ cameras. The proposed methodology fuses a visual attention method that exploits low-level image features appropriately selected for maritime environment, with appropriate tracker. Such features require no assumptions about environmental nor visual conditions. The offline initialization is based on large graph semi-supervised technique in order to minimize user’s effort. System’s performance was evaluated with videos from cameras placed at Limassol port and Venetian port of Chania. Results suggest high detection ability, despite dynamically changing visual conditions and different kinds of vessels, all in real time.\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005456205830594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005456205830594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于视觉的海上监视系统,该系统采用移动PTZ摄像机。该方法融合了一种视觉注意方法,该方法利用适合海洋环境的低层图像特征和适当的跟踪器。这些特征不需要对环境或视觉条件进行假设。离线初始化是基于大图半监督技术,以尽量减少用户的工作量。系统的性能通过放置在利马索尔港和哈尼亚威尼斯港的摄像机的录像进行评估。结果表明,尽管视觉条件和血管种类的变化是动态的,但其检测能力仍然很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maritime Targets Detection from Ground Cameras Exploiting Semi-supervised Machine Learning
This paper presents a vision-based system for maritime surveillance, using moving PTZ cameras. The proposed methodology fuses a visual attention method that exploits low-level image features appropriately selected for maritime environment, with appropriate tracker. Such features require no assumptions about environmental nor visual conditions. The offline initialization is based on large graph semi-supervised technique in order to minimize user’s effort. System’s performance was evaluated with videos from cameras placed at Limassol port and Venetian port of Chania. Results suggest high detection ability, despite dynamically changing visual conditions and different kinds of vessels, all in real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信