基于异构数据关系建模的个性化推荐系统扩展知识图

Seungjoo Lee, Seokho Ahn, Euijong Lee, Young-Duk Seo
{"title":"基于异构数据关系建模的个性化推荐系统扩展知识图","authors":"Seungjoo Lee, Seokho Ahn, Euijong Lee, Young-Duk Seo","doi":"10.30693/smj.2023.12.4.27","DOIUrl":null,"url":null,"abstract":"Many researchers have investigated ways to enhance recommender systems by integrating heterogeneous data to address the data sparsity problem. However, only a few studies have successfully integrated heterogeneous data using knowledge graph. Additionally, most of the knowledge graphs built in these studies only incorporate explicit relationships between entities and lack additional information. Therefore, we propose a method for expanding knowledge graphs by using deep learning to model latent relationships between heterogeneous data from multiple knowledge bases. Our extended knowledge graph enhances the quality of entity features and ultimately increases the accuracy of predicted user preferences. Experiments using real music data demonstrate that the expanded knowledge graph leads to an increase in recommendation accuracy when compared to the original knowledge graph.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Knowledge Graph using Relation Modeling between Heterogeneous Data for Personalized Recommender Systems\",\"authors\":\"Seungjoo Lee, Seokho Ahn, Euijong Lee, Young-Duk Seo\",\"doi\":\"10.30693/smj.2023.12.4.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many researchers have investigated ways to enhance recommender systems by integrating heterogeneous data to address the data sparsity problem. However, only a few studies have successfully integrated heterogeneous data using knowledge graph. Additionally, most of the knowledge graphs built in these studies only incorporate explicit relationships between entities and lack additional information. Therefore, we propose a method for expanding knowledge graphs by using deep learning to model latent relationships between heterogeneous data from multiple knowledge bases. Our extended knowledge graph enhances the quality of entity features and ultimately increases the accuracy of predicted user preferences. Experiments using real music data demonstrate that the expanded knowledge graph leads to an increase in recommendation accuracy when compared to the original knowledge graph.\",\"PeriodicalId\":249252,\"journal\":{\"name\":\"Korean Institute of Smart Media\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Institute of Smart Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30693/smj.2023.12.4.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.4.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究者已经研究了通过集成异构数据来增强推荐系统的方法,以解决数据稀疏性问题。然而,利用知识图谱对异构数据进行集成的研究很少。此外,在这些研究中建立的大多数知识图谱只包含实体之间的明确关系,缺乏额外的信息。因此,我们提出了一种利用深度学习对来自多个知识库的异构数据之间的潜在关系进行建模的知识图扩展方法。我们扩展的知识图谱提高了实体特征的质量,最终提高了预测用户偏好的准确性。使用真实音乐数据的实验表明,与原始知识图相比,扩展后的知识图可以提高推荐的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Knowledge Graph using Relation Modeling between Heterogeneous Data for Personalized Recommender Systems
Many researchers have investigated ways to enhance recommender systems by integrating heterogeneous data to address the data sparsity problem. However, only a few studies have successfully integrated heterogeneous data using knowledge graph. Additionally, most of the knowledge graphs built in these studies only incorporate explicit relationships between entities and lack additional information. Therefore, we propose a method for expanding knowledge graphs by using deep learning to model latent relationships between heterogeneous data from multiple knowledge bases. Our extended knowledge graph enhances the quality of entity features and ultimately increases the accuracy of predicted user preferences. Experiments using real music data demonstrate that the expanded knowledge graph leads to an increase in recommendation accuracy when compared to the original knowledge graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信